easyconfigs-it4i/d/DFT-D4/DFT-D4-3.6.0-intel-2022b-Python-3.10.8.eb
Lukas Krupcik a2bb6c8760 new file: d/DFT-D4/DFT-D4-3.2.0-remove_module_id.patch
new file:   d/DFT-D4/DFT-D4-3.6.0-intel-2022b-Python-3.10.8.eb
	modified:   d/DFTB+/DFTB+-21.1-intel-2020b-Python-3.8.6-karolina.eb
	modified:   d/DFTB+/DFTB+-21.2-intel-2020b-TB.eb
	new file:   f/Forge/Forge-23.0.2.eb
	new file:   l/LAPACK/LAPACK-3.10.0-GCC-12.2.0.eb
	modified:   p/PyTorch/PyTorch-1.11.0-fosscuda-2020b.eb
	modified:   v/VASP/VASP-6.2.0-intel-2020b.eb
	new file:   v/VASP/VASP-6.4.2-intel-2022b-DFT-D4.eb
	new file:   w/Wannier90/Wannier90-3.1.0-intel-2022b-serial.eb
2023-09-27 09:23:34 +02:00

47 lines
1.3 KiB
Plaintext

# IT4Innovations
# LK 2023
easyblock = 'MesonNinja'
name = 'DFT-D4'
version = '3.6.0'
versionsuffix = '-Python-%(pyver)s'
homepage = 'https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dftd4'
description = """Generally Applicable Atomic-Charge Dependent London Dispersion Correction."""
toolchain = {'name': 'intel', 'version': '2022b'}
import os
if os.environ.get("CLUSTERNAME") in ["KAROLINA"]:
toolchainopts = {'usempi': True, 'optarch': 'march=core-avx2', 'pic': True}
else:
toolchainopts = {'usempi': True, 'pic': True}
source_urls = ['https://github.com/dftd4/dftd4/archive/refs/tags/']
sources = ['v%(version)s.tar.gz']
patches = ['DFT-D4-3.2.0-remove_module_id.patch']
checksums = [
'0e3e8d5f9e9e5414b9979967c074c953706053832e551d922c27599e7324bace', # v3.6.0.tar.gz
'8c3c81338cb57972580e4cf3db307aa2e44b8b3f6d1ba7ae24fa9d807490a93b', # DFT-D4-3.2.0-remove_module_id.patch
]
builddependencies = [
('Ninja', '1.11.1'),
('Meson', '0.64.0'),
]
dependencies = [
('Python', '3.10.8'),
]
configopts = '-Dpython=true -Dfortran_link_args=-qopenmp -Dapi_v2=true'
sanity_check_paths = {
'files': ['bin/dftd4', 'lib/libdftd4.a', 'lib/libdftd4.%s' % SHLIB_EXT, 'include/dftd4.mod'],
'dirs': [],
}
sanity_check_commands = ["dftd4 --version"]
moduleclass = 'chem'