new file: d/DFT-D4/DFT-D4-3.2.0-remove_module_id.patch

new file:   d/DFT-D4/DFT-D4-3.6.0-intel-2022b-Python-3.10.8.eb
	modified:   d/DFTB+/DFTB+-21.1-intel-2020b-Python-3.8.6-karolina.eb
	modified:   d/DFTB+/DFTB+-21.2-intel-2020b-TB.eb
	new file:   f/Forge/Forge-23.0.2.eb
	new file:   l/LAPACK/LAPACK-3.10.0-GCC-12.2.0.eb
	modified:   p/PyTorch/PyTorch-1.11.0-fosscuda-2020b.eb
	modified:   v/VASP/VASP-6.2.0-intel-2020b.eb
	new file:   v/VASP/VASP-6.4.2-intel-2022b-DFT-D4.eb
	new file:   w/Wannier90/Wannier90-3.1.0-intel-2022b-serial.eb
This commit is contained in:
Lukas Krupcik 2023-09-27 09:23:34 +02:00
parent 4df1b87939
commit a2bb6c8760
10 changed files with 268 additions and 2 deletions

View File

@ -0,0 +1,26 @@
# The separate mod directory isn't helpful for a EB install since we install a unique version per compiler anyway.
# The pkg-config file can just include one path anyway
# so separating out the (compiler specific) mod files won't help either way.
# Author: mikael.ohman@chalmers.se
--- meson.build.orig 2021-05-10 23:11:21.509151845 +0200
+++ meson.build 2021-05-10 23:32:55.890484048 +0200
@@ -79,17 +79,16 @@
dftd4_header,
)
- module_id = meson.project_name() / fc_id + '-' + fc.version()
meson.add_install_script(
find_program(files('config'/'install-mod.py')),
- get_option('includedir') / module_id,
+ get_option('includedir'),
)
pkg = import('pkgconfig')
pkg.generate(
dftd4_lib,
description: 'Generally Applicable Atomic-Charge Dependent London Dispersion Correction',
- subdirs: ['', module_id],
+ subdirs: [''],
)
asciidoc = find_program('asciidoctor', required: false)

View File

@ -0,0 +1,46 @@
# IT4Innovations
# LK 2023
easyblock = 'MesonNinja'
name = 'DFT-D4'
version = '3.6.0'
versionsuffix = '-Python-%(pyver)s'
homepage = 'https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dftd4'
description = """Generally Applicable Atomic-Charge Dependent London Dispersion Correction."""
toolchain = {'name': 'intel', 'version': '2022b'}
import os
if os.environ.get("CLUSTERNAME") in ["KAROLINA"]:
toolchainopts = {'usempi': True, 'optarch': 'march=core-avx2', 'pic': True}
else:
toolchainopts = {'usempi': True, 'pic': True}
source_urls = ['https://github.com/dftd4/dftd4/archive/refs/tags/']
sources = ['v%(version)s.tar.gz']
patches = ['DFT-D4-3.2.0-remove_module_id.patch']
checksums = [
'0e3e8d5f9e9e5414b9979967c074c953706053832e551d922c27599e7324bace', # v3.6.0.tar.gz
'8c3c81338cb57972580e4cf3db307aa2e44b8b3f6d1ba7ae24fa9d807490a93b', # DFT-D4-3.2.0-remove_module_id.patch
]
builddependencies = [
('Ninja', '1.11.1'),
('Meson', '0.64.0'),
]
dependencies = [
('Python', '3.10.8'),
]
configopts = '-Dpython=true -Dfortran_link_args=-qopenmp -Dapi_v2=true'
sanity_check_paths = {
'files': ['bin/dftd4', 'lib/libdftd4.a', 'lib/libdftd4.%s' % SHLIB_EXT, 'include/dftd4.mod'],
'dirs': [],
}
sanity_check_commands = ["dftd4 --version"]
moduleclass = 'chem'

View File

@ -44,6 +44,11 @@ sources = [
'extract_cmd': local_external_extract % ('slakos', 'slakos'),
},
]
checksums = [
'31d5a488843a05d8589a375307a2832c1fc938f9f7d830c45a062726659e7b0a',
'9b64193368a13ae7c238399da8be2b3730a0f3273f9bf6c8054b2ff57d748823'
]
builddependencies = [
('CMake', '3.18.4'),

View File

@ -47,6 +47,10 @@ sources = [
builddependencies = [
('CMake', '3.18.4'),
]
checksums = [
'e73aa698ff951b59f7fe2ea027b292bae16abf545c9fdbb11b5b5127f04a3c10',
'9b64193368a13ae7c238399da8be2b3730a0f3273f9bf6c8054b2ff57d748823'
]
dependencies = [
# ('Python', '3.8.6'),

49
f/Forge/Forge-23.0.2.eb Normal file
View File

@ -0,0 +1,49 @@
# IT4Innovations
# !!! --include-easyblocks /apps/easybuild/it4i-easyblocks/easyblocks/a/allineabase.py !!!
# LK 2023
easyblock = 'AllineaBase'
name = 'Forge'
version = "23.0.2"
homepage = 'http://www.allinea.com/products/develop-allinea-forge'
description = """Allinea Forge is the local_complete toolsuite for software development
- with everything needed to debug, profile, optimize, edit and build C, C++
and FORTRAN applications on Linux for high performance - from single threads through
to local_complex parallel HPC codes with MPI, OpenMP, threads or CUDA.
"""
toolchain = SYSTEM
source_urls = [
# Use manually downloaded sources
# http://content.allinea.com/downloads/allinea-reports-latest-Redhat-6.0-x86_64.tar
# and rename it to format %(namelower)s-%(version)s.tar, so
# forge-7.0.4.tar.
]
sources = ['linaro-forge-%(version)s-linux-x86_64.tar']
checksums = ['565f0c073c6c8cbb06c062ca414e3f6ff8c6ca6797b03d247b030a9fbc55a5b1']
skipsteps = ['configure', 'build']
postinstallcmds = [
'ln -s /apps/licenses/Arm/Licence %(installdir)s/licences/Licence.16312',
'ln -s /apps/licenses/PerformanceReports/Licence %(installdir)s/licences/Licence.16313',
]
sanity_check_paths = {
'files': [
'bin/ddt-client',
'bin/map',
'bin/ddt',
#'bin/ddt-debugger',
#'bin/ddt-debugger-ll',
#'bin/ddt-debugger-mps',
'bin/ddt-mpirun',
'bin/forge',
'bin/make-profiler-libraries'],
'dirs': ['lib'],
}
moduleclass = 'debugger'

View File

@ -0,0 +1,19 @@
# IT4Innovations
# LK 2023
name = 'LAPACK'
version = '3.10.0'
homepage = 'https://www.netlib.org/lapack/'
description = """LAPACK is written in Fortran90 and provides routines for solving systems of
simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue
problems, and singular value problems."""
toolchain = {'name': 'GCC', 'version': '12.2.0'}
toolchainopts = {'pic': True}
source_urls = ['https://github.com/Reference-LAPACK/lapack/archive/']
sources = ['v%(version)s.tar.gz']
checksums = ['328c1bea493a32cac5257d84157dc686cc3ab0b004e2bea22044e0a59f6f8a19']
moduleclass = 'numlib'

View File

@ -35,7 +35,7 @@ patches = [
'PyTorch-1.11.0_disable_failing_jit_cuda_fuser_tests.patch',
]
checksums = [
None, # can't add proper SHA256 checksum, because source tarball is created locally after recursive 'git clone'
'c5bf5b9e24f3884335c9e30878a763ec31e1ed429904d966c07265b86a16ba7b', # can't add proper SHA256 checksum, because source tarball is created locally after recursive 'git clone'
'b899aa94d9e60f11ee75a706563312ccefa9cf432756c470caa8e623991c8f18', # PyTorch-1.7.0_avoid-nan-in-test-torch.patch
'622cb1eaeadc06e13128a862d9946bcc1f1edd3d02b259c56a9aecc4d5406b8a', # PyTorch-1.7.0_disable-dev-shm-test.patch
'89ac7a8e9e7df2e64cf8404fe3a279f5e9b759fee41c9de3aaff9c22f385c2c6', # PyTorch-1.8.1_dont-use-gpu-ccc-in-test.patch
@ -70,7 +70,7 @@ dependencies = [
('protobuf', '3.14.0'),
('protobuf-python', '3.14.0'),
('pybind11', '2.6.0'),
('SciPy-bundle', '2020.11'),
# ('SciPy-bundle', '2020.11'),
('typing-extensions', '3.7.4.3'),
('PyYAML', '5.3.1'),
('MPFR', '4.1.0'),

View File

@ -25,6 +25,14 @@ sources = ['%(namelower)s.%(version)s.tgz']
prebuildopts = 'cp arch/makefile.include.linux_intel ./makefile.include && '
# DFTD4
prebuildopts += 'echo "#DFTD4"'
prebuildopts += 'echo "CPP_OPTIONS += -DDFTD4 " >> makefile.include && '
prebuildopts += 'echo "DFTD4_ROOT ?= /path/to/your/dft4/installation" >> makefile.include && '
prebuildopts += 'echo "LLIBS += -L$(DFTD4_ROOT)/build -ldftd4" >> makefile.include && '
prebuildopts += 'echo "INCS += -I$(DFTD4_ROOT)/libdftd4.a.p" >> makefile.include && '
# Makefile uses LIBS as a list of folders
prebuildopts += 'unset LIBS && '

View File

@ -0,0 +1,70 @@
# IT4Innovations
# LK 2023
easyblock = 'MakeCp'
name = 'VASP'
version = '6.4.2'
versionsuffix = "-DFT-D4"
homepage = 'http://www.vasp.at'
docurls = 'https://www.vasp.at/wiki/index.php/The_VASP_Manual'
description = """The Vienna Ab initio Simulation Package (VASP) is a local computer program for atomic scale
materials modelling, e.g. electronic structure calculations and quantum-mechanical molecular dynamics,
from first principles.
To use VASP, you need an academic license from University of Vienna. Follow the instructions at https://www.vasp.at/index.php/faqs.
Please send us a list of authorized users and their IDs for which you need access (use only http://support.it4i.cz/rt). We are responsible for verifying your licenses."""
toolchain = {'name': 'intel', 'version': '2022b'}
# Vasp is proprietary software, see http://www.vasp.at/index.php/faqs on
# how to get access to the code
sources = ['%(namelower)s.%(version)s.tgz']
patches = ['VASP-%(version)s-NVHPC-23.5-CUDA-12.2.0-adjust-makefile.patch']
checksums = [
{'vasp.%(version)s.tgz': 'b704637f7384673f91adfbc803edc5cc7fe736d9623453461f7cdc29b123410e'},
{'VASP-%(version)s-NVHPC-23.5-CUDA-12.2.0-adjust-makefile.patch':
'dfc717642ae2ce9b04ed78439fc4d1072dc0d08df4aca2da881b944f2e75625e'},
]
# use serial compilation of W90, see https://www.vasp.at/wiki/index.php/Makefile.include#Wannier90_.28optional.29
# Important: In case of Wannier90 3.x, you should compile a serial version by removing COMMS=mpi in the make.inc of Wannier90.
dependencies = [
('HDF5', '1.14.0'),
('Wannier90', '3.1.0', '-serial'),
('DFT-D4', '3.6.0', '-Python-3.10.8'),
]
prebuildopts = 'cp arch/makefile.include.intel ./makefile.include && '
# DFTD4
prebuildopts += 'echo "" >> makefile.include &&'
prebuildopts += 'echo "#DFTD4" >> makefile.include && '
prebuildopts += 'echo "CPP_OPTIONS += -DDFTD4 " >> makefile.include && '
prebuildopts += 'echo "DFTD4_ROOT ?= $EBROOTDFTMIND4 " >> makefile.include && '
prebuildopts += 'echo "LLIBS += $( shell pkg-config --libs dftd4) -ldftd4 " >> makefile.include && '
prebuildopts += 'echo "INCS += $( shell pkg-config ---flags dftd4)" >> makefile.include && '
# AMD/Intel CPU switch - We set xHost by default; change it to -march=core-avx2 when necessary
import os
if os.environ.get("CLUSTERNAME") in ["KAROLINA"]:
prebuildopts += 'sed -i "s|-xHOST|-march=core-avx2|" makefile.include && '
prebuildopts += 'sed -i "s|-march=xHost|-march=core-avx2|" makefile.include && '
# VASP uses LIBS as a list of folders
prebuildopts += 'unset LIBS && '
buildopts = 'std gam ncl '
parallel = 1
files_to_copy = [(['bin/vasp_std', 'bin/vasp_gam', 'bin/vasp_ncl'], 'bin')]
sanity_check_paths = {
'files': ['bin/vasp_std', 'bin/vasp_gam', 'bin/vasp_ncl'],
'dirs': []
}
modluafooter = 'add_property("state","license")'
moduleclass = 'chem'

View File

@ -0,0 +1,39 @@
# IT4Innovations
# LK 2023
easyblock = 'MakeCp'
name = 'Wannier90'
version = '3.1.0'
versionsuffix = '-serial'
homepage = 'http://www.wannier.org'
description = """A tool for obtaining maximally-localised Wannier functions"""
toolchain = {'name': 'intel', 'version': '2022b'}
toolchainopts = {'usempi': True}
github_account = 'wannier-developers'
source_urls = [GITHUB_LOWER_SOURCE]
sources = [{'download_filename': 'v%(version)s.tar.gz', 'filename': SOURCELOWER_TAR_GZ}]
patches = ['Wannier90_3x_ignore_makeinc.patch']
checksums = [
'40651a9832eb93dec20a8360dd535262c261c34e13c41b6755fa6915c936b254', # wannier90-3.1.0.tar.gz
'561c0d296e0e30b8bb303702cd6e41ded54c153d9b9e6cd9cab73858e5e2945e', # Wannier90_3x_ignore_makeinc.patch
]
buildopts = 'all F90=$F90 MPIF90=$MPIF90 FCOPTS="$FFLAGS" LDOPTS="$FFLAGS" '
buildopts += 'LIBDIR="$LAPACK_LIB_DIR" LIBS="$LIBLAPACK" '
# compile serial version for use with VASP per
# https://www.vasp.at/wiki/index.php/Makefile.include#Wannier90_.28optional.29
#buildopts += 'COMMS=mpi'
files_to_copy = [(['wannier90.x', 'postw90.x'], 'bin'), (['libwannier.a'], 'lib')]
sanity_check_paths = {
'files': ['bin/wannier90.x', 'bin/postw90.x', 'lib/libwannier.a'],
'dirs': []
}
moduleclass = 'chem'