37 lines
1.4 KiB
Markdown

# simpleCUBLASXT - Simple CUBLAS XT
## Description
Example of using CUBLAS-XT library which performs GEMM operations over Multiple GPUs.
## Key Concepts
CUBLAS-XT Library
## Supported SM Architectures
[SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows
## Supported CPU Architecture
x86_64, aarch64
## CUDA APIs involved
### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
cudaGetDeviceProperties, cudaGetDeviceCount, cudaFree
## Dependencies needed to build/run
[CUBLAS](../../../README.md#cublas)
## Prerequisites
Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## References (for more details)