33 lines
1.5 KiB
Markdown

# simpleMultiGPU - Simple Multi-GPU
## Description
This application demonstrates how to use the new CUDA 4.0 API for CUDA context management and multi-threaded access to run CUDA kernels on multiple-GPUs.
## Key Concepts
Asynchronous Data Transfers, CUDA Streams and Events, Multithreading, Multi-GPU
## Supported SM Architectures
[SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows
## Supported CPU Architecture
x86_64, armv7l
## CUDA APIs involved
### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
cudaStreamDestroy, cudaFree, cudaMallocHost, cudaSetDevice, cudaFreeHost, cudaStreamSynchronize, cudaMalloc, cudaMemcpyAsync, cudaStreamCreate, cudaGetDeviceCount
## Prerequisites
Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## References (for more details)