Rob Armstrong c87881f02c
Update matrix multiplication sample README references (#325)
- Clarify reference to Shared Memory section in CUDA programming guide
- Update cuBLAS interface version description
- Add hyperlink to Shared Memory documentation
2025-02-18 14:02:59 -08:00

33 lines
2.0 KiB
Markdown

# matrixMul - Matrix Multiplication (CUDA Runtime API Version)
## Description
This sample implements matrix multiplication and is exactly the same as the second example of the [Shared Memory](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory) section of the programming guide. It has been written for clarity of exposition to illustrate various CUDA programming principles, not with the goal of providing the most performant generic kernel for matrix multiplication. To illustrate GPU performance for matrix multiply, this sample also shows how to use the CUDA 4.0+ interface for cuBLAS to demonstrate high-performance performance for matrix multiplication.
## Key Concepts
CUDA Runtime API, Linear Algebra
## Supported SM Architectures
[SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows
## Supported CPU Architecture
x86_64, armv7l, aarch64
## CUDA APIs involved
### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
cudaStreamCreateWithFlags, cudaProfilerStop, cudaMalloc, cudaFree, cudaMallocHost, cudaProfilerStart, cudaEventSynchronize, cudaEventRecord, cudaFreeHost, cudaStreamSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaMemcpyAsync, cudaEventCreate
## Prerequisites
Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## References (for more details)