35 lines
1.4 KiB
Markdown

# HSOpticalFlow - Optical Flow
## Description
Variational optical flow estimation example. Uses textures for image operations. Shows how simple PDE solver can be accelerated with CUDA.
## Key Concepts
Image Processing, Data Parallel Algorithms
## Supported SM Architectures
[SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows
## Supported CPU Architecture
x86_64, armv7l
## CUDA APIs involved
### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
cudaMalloc, cudaMemcpy, cudaMemset, cudaFree
## Prerequisites
Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## References (for more details)
[whitepaper](./doc/OpticalFlow.pdf)