mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-04-23 16:21:29 +01:00
34 lines
2.0 KiB
Markdown
34 lines
2.0 KiB
Markdown
# matrixMulDynlinkJIT - Matrix Multiplication (CUDA Driver API version with Dynamic Linking Version)
|
|
|
|
## Description
|
|
|
|
This sample revisits matrix multiplication using the CUDA driver API. It demonstrates how to link to CUDA driver at runtime and how to use JIT (just-in-time) compilation from PTX code. It has been written for clarity of exposition to illustrate various CUDA programming principles, not with the goal of providing the most performant generic kernel for matrix multiplication. CUBLAS provides high-performance matrix multiplication.
|
|
|
|
## Key Concepts
|
|
|
|
CUDA Driver API, CUDA Dynamically Linked Library
|
|
|
|
## Supported SM Architectures
|
|
|
|
[SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus)
|
|
|
|
## Supported OSes
|
|
|
|
Linux, Windows
|
|
|
|
## Supported CPU Architecture
|
|
|
|
x86_64, ppc64le, armv7l
|
|
|
|
## CUDA APIs involved
|
|
|
|
### [CUDA Driver API](http://docs.nvidia.com/cuda/cuda-driver-api/index.html)
|
|
cuMemcpyDtoH, cuDeviceGetName, cuParamSeti, cuModuleLoadDataEx, cuModuleGetFunction, cuLaunchGrid, cuFuncSetSharedSize, cuMemFree, cuParamSetSize, cuParamSetv, cuInit, cuMemcpyHtoD, cuLaunchKernel, cuDeviceGet, cuFuncSetBlockShape, cuCtxDestroy, cuDeviceGetCount, cuDeviceComputeCapability, cuCtxSynchronize, cuMemAlloc, cuCtxCreate
|
|
|
|
## Prerequisites
|
|
|
|
Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
|
|
|
|
## References (for more details)
|
|
|