Compare commits

...

21 Commits

Author SHA1 Message Date
ROOZBEH
62fd85ab04
Merge 5748bf69dabd81be7d0993c30fd1996cc19c5eba into f3b7c41ad6202902290d2bbd16428455b3ee375a 2025-02-25 11:22:09 +08:00
Jonathan Bentz
f3b7c41ad6
cudaNvSci: Update README.md fixing typo (#337)
Fixes #193
2025-02-21 09:21:43 -08:00
Jonathan Bentz
29fb758e62
conjugateGradient: Ensure allocated memory is freed (#336)
Fixes #202
2025-02-21 09:20:53 -08:00
Jonathan Bentz
3bc08136ff
Update README.md link for sortingNetworks (#335)
Fixes #302
2025-02-21 09:19:21 -08:00
Jonathan Bentz
85eefa06c4
boxFilter: Remove unused parameter (#338)
Fixes: #122
2025-02-21 09:17:45 -08:00
XSShawnZeng
c357dd1e6b
Fixing issue #321: A potential bug in memMapIPCDrv/memMapIpc.cpp (#334) 2025-02-21 09:14:25 -08:00
Jonathan Bentz
efb46383e0
Transpose: Change TILE_DIM to 32 to fix bank conflicts
Fixes #175
2025-02-20 15:46:44 -08:00
XSShawnZeng
8d564d5e3a
Enhancement for GLFW include and lib search (#331)
Fixes NVIDIA bug 5115098
2025-02-20 08:06:40 -08:00
Jake Hemstad
37c5bcbef4 Update kernels.cuh 2025-02-19 17:33:10 -08:00
Rob Armstrong
940a4c7a91
memMapIpc: Resolve build-time warnings and minor potential issues (#329)
* Fix compute performance calculation type casting in gpuGetMaxGflopsDeviceIdDRV() for #109

* 3_CUDA_Features/memMapIPCDrv: Increase procIdx buffer size to prevent potential buffer overflow

* memMapIPCDrv: Fix memory leaks and improve header inclusion

- Remove redundant string.h header
- Add memory cleanup for dynamically allocated JIT options and log buffer
- Fix printf format specifier for unsigned long long
2025-02-19 15:52:20 -08:00
ohmaya
61bd39800d
simplePrintf.cu: "Compute capability" text (#299)
Compute %d.%d capability => Compute capability %d.%d
2025-02-19 15:22:34 -08:00
Rob Armstrong
8a96d2eee7
Fix compute performance calculation type casting in gpuGetMaxGflopsDeviceIdDRV() for #109 2025-02-19 10:43:18 -08:00
Rob Armstrong
e762d58260
Merge pull request #247 from sangeetsatheesh/master
Fix typo from Open issue #161
2025-02-18 17:22:48 -08:00
Rob Armstrong
8fd1701744
Merge branch 'master' into master 2025-02-18 17:22:04 -08:00
Rob Armstrong
94765c1597
Fix minor typo in README.md (#326) 2025-02-18 17:14:14 -08:00
Rob Armstrong
c87881f02c
Update matrix multiplication sample README references (#325)
- Clarify reference to Shared Memory section in CUDA programming guide
- Update cuBLAS interface version description
- Add hyperlink to Shared Memory documentation
2025-02-18 14:02:59 -08:00
Rob Armstrong
25400b6b3c
Merge pull request #287 from steffen-v/patch-1
fix "gridy" comandline argument for initMC
2025-02-18 13:30:27 -08:00
rkarimi
5748bf69da Modified the binomial options code to support American Options as well.
Note that the Black-Scholes method can only be used for the European options. For validating the GPU results the computed prices are only compared to the CPU version of binomial options algorithm.
2024-12-19 22:09:22 +00:00
steffen-v
22424227e7
fix "gridy" comandline argument for initMC 2024-07-26 14:42:05 +02:00
Sangeet S
42ff742bf5
Merge pull request #1 from sangeetsatheesh/sangeetsatheesh-fix-typo
Fix typo #161
2024-01-17 13:16:53 -05:00
Sangeet S
8ccb13c6f0
Fix typo #161
Fix typo in line 14 from "simple exemple" to simple "example"
2024-01-17 13:16:01 -05:00
23 changed files with 176 additions and 93 deletions

View File

@ -241,7 +241,7 @@ inline int gpuGetMaxGflopsDeviceIdDRV() {
}
unsigned long long compute_perf =
(unsigned long long)(multiProcessorCount * sm_per_multiproc *
((unsigned long long)multiProcessorCount * sm_per_multiproc *
clockRate);
if (compute_perf > max_compute_perf) {

View File

@ -203,7 +203,7 @@ Vulkan is a low-overhead, cross-platform 3D graphics and compute API. Vulkan tar
#### GLFW
GLFW is a lightweight, open-source library designed for managing OpenGL, OpenGL ES, and Vulkan contexts. It simplifies the process of creating and managing windows, handling user input (keyboard, mouse, and joystick), and working with multiple monitors in a cross-platform manner.
To set up GLFW on a Windows system, Download the pre-built binaries from [GLFW website](https://www.glfw.org/download.html) and extract the zip file into the folder, pass the GLFW include header as `-DGLFW_INCLUDE_DIR` for cmake configuring and follow the Build_instructions.txt in the sample folder to set up the t.
To set up GLFW on a Windows system, Download the pre-built binaries from [GLFW website](https://www.glfw.org/download.html) and extract the zip file into the folder, pass the GLFW include header folder as `-DGLFW_INCLUDE_DIR` and lib folder as `-DGLFW_LIB_DIR` for cmake configuring.
#### OpenMP

View File

@ -2,7 +2,7 @@
## Description
This sample implements matrix multiplication and is exactly the same as Chapter 6 of the programming guide. It has been written for clarity of exposition to illustrate various CUDA programming principles, not with the goal of providing the most performant generic kernel for matrix multiplication. To illustrate GPU performance for matrix multiply, this sample also shows how to use the new CUDA 4.0 interface for CUBLAS to demonstrate high-performance performance for matrix multiplication.
This sample implements matrix multiplication and is exactly the same as the second example of the [Shared Memory](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory) section of the programming guide. It has been written for clarity of exposition to illustrate various CUDA programming principles, not with the goal of providing the most performant generic kernel for matrix multiplication. To illustrate GPU performance for matrix multiply, this sample also shows how to use the CUDA 4.0+ interface for cuBLAS to demonstrate high-performance performance for matrix multiplication.
## Key Concepts

View File

@ -2,7 +2,7 @@
## Description
This sample implements matrix multiplication and is exactly the same as Chapter 6 of the programming guide. It has been written for clarity of exposition to illustrate various CUDA programming principles, not with the goal of providing the most performant generic kernel for matrix multiplication. To illustrate GPU performance for matrix multiply, this sample also shows how to use the new CUDA 4.0 interface for CUBLAS to demonstrate high-performance performance for matrix multiplication.
This sample implements matrix multiplication and is exactly the same as the second example of the [Shared Memory](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory) section of the programming guide. It has been written for clarity of exposition to illustrate various CUDA programming principles, not with the goal of providing the most performant generic kernel for matrix multiplication. To illustrate GPU performance for matrix multiply, this sample also shows how to use the CUDA 4.0+ interface for cuBLAS to demonstrate high-performance performance for matrix multiplication.
## Key Concepts

View File

@ -57,7 +57,7 @@ int main(int argc, char **argv) {
// Get GPU information
checkCudaErrors(cudaGetDevice(&devID));
checkCudaErrors(cudaGetDeviceProperties(&props, devID));
printf("Device %d: \"%s\" with Compute %d.%d capability\n", devID, props.name,
printf("Device %d: \"%s\" with Compute capability %d.%d\n", devID, props.name,
props.major, props.minor);
printf("printf() is called. Output:\n\n");

View File

@ -11,5 +11,4 @@ This sample enumerates the properties of the CUDA devices present in the system.
This sample enumerates the properties of the CUDA devices present using CUDA Driver API calls
### [topologyQuery](./topologyQuery)
A simple exemple on how to query the topology of a system with multiple GPU
A simple example on how to query the topology of a system with multiple GPU

View File

@ -77,7 +77,6 @@ int filter_radius = 14;
int nthreads = 64;
unsigned int width, height;
unsigned int *h_img = NULL;
unsigned int *d_img = NULL;
unsigned int *d_temp = NULL;
GLuint pbo; // OpenGL pixel buffer object
@ -108,11 +107,11 @@ extern "C" void computeGold(float *id, float *od, int w, int h, int n);
// These are CUDA functions to handle allocation and launching the kernels
extern "C" void initTexture(int width, int height, void *pImage, bool useRGBA);
extern "C" void freeTextures();
extern "C" double boxFilter(float *d_src, float *d_temp, float *d_dest,
extern "C" double boxFilter(float *d_temp, float *d_dest,
int width, int height, int radius, int iterations,
int nthreads, StopWatchInterface *timer);
extern "C" double boxFilterRGBA(unsigned int *d_src, unsigned int *d_temp,
extern "C" double boxFilterRGBA(unsigned int *d_temp,
unsigned int *d_dest, int width, int height,
int radius, int iterations, int nthreads,
StopWatchInterface *timer);
@ -165,7 +164,7 @@ void display() {
size_t num_bytes;
checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
(void **)&d_result, &num_bytes, cuda_pbo_resource));
boxFilterRGBA(d_img, d_temp, d_result, width, height, filter_radius,
boxFilterRGBA(d_temp, d_result, width, height, filter_radius,
iterations, nthreads, kernel_timer);
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0));
@ -282,11 +281,7 @@ void reshape(int x, int y) {
}
void initCuda(bool useRGBA) {
// allocate device memory
checkCudaErrors(
cudaMalloc((void **)&d_img, (width * height * sizeof(unsigned int))));
checkCudaErrors(
cudaMalloc((void **)&d_temp, (width * height * sizeof(unsigned int))));
checkCudaErrors(cudaMalloc((void **)&d_temp, (width * height * sizeof(unsigned int))));
// Refer to boxFilter_kernel.cu for implementation
initTexture(width, height, h_img, useRGBA);
@ -304,11 +299,6 @@ void cleanup() {
h_img = NULL;
}
if (d_img) {
cudaFree(d_img);
d_img = NULL;
}
if (d_temp) {
cudaFree(d_temp);
d_temp = NULL;
@ -413,7 +403,7 @@ int runBenchmark() {
cudaMalloc((void **)&d_result, width * height * sizeof(unsigned int)));
// warm-up
boxFilterRGBA(d_img, d_temp, d_temp, width, height, filter_radius, iterations,
boxFilterRGBA(d_temp, d_temp, width, height, filter_radius, iterations,
nthreads, kernel_timer);
checkCudaErrors(cudaDeviceSynchronize());
@ -426,7 +416,7 @@ int runBenchmark() {
for (int i = 0; i < iCycles; i++) {
dProcessingTime +=
boxFilterRGBA(d_img, d_temp, d_img, width, height, filter_radius,
boxFilterRGBA(d_temp, d_temp, width, height, filter_radius,
iterations, nthreads, kernel_timer);
}
@ -469,7 +459,7 @@ int runSingleTest(char *ref_file, char *exec_path) {
{
printf("%s (radius=%d) (passes=%d) ", sSDKsample, filter_radius,
iterations);
boxFilterRGBA(d_img, d_temp, d_result, width, height, filter_radius,
boxFilterRGBA(d_temp, d_result, width, height, filter_radius,
iterations, nthreads, kernel_timer);
// check if kernel execution generated an error

View File

@ -399,7 +399,6 @@ extern "C" void freeTextures() {
Perform 2D box filter on image using CUDA
Parameters:
d_src - pointer to input image in device memory
d_temp - pointer to temporary storage in device memory
d_dest - pointer to destination image in device memory
width - image width
@ -408,7 +407,7 @@ extern "C" void freeTextures() {
iterations - number of iterations
*/
extern "C" double boxFilter(float *d_src, float *d_temp, float *d_dest,
extern "C" double boxFilter(float *d_temp, float *d_dest,
int width, int height, int radius, int iterations,
int nthreads, StopWatchInterface *timer) {
// var for kernel timing
@ -447,7 +446,7 @@ extern "C" double boxFilter(float *d_src, float *d_temp, float *d_dest,
}
// RGBA version
extern "C" double boxFilterRGBA(unsigned int *d_src, unsigned int *d_temp,
extern "C" double boxFilterRGBA(unsigned int *d_temp,
unsigned int *d_dest, int width, int height,
int radius, int iterations, int nthreads,
StopWatchInterface *timer) {

View File

@ -34,13 +34,12 @@
#define _KERNELS_H_
#include <stdio.h>
#include <thrust/functional.h>
#include "common.cuh"
// Functors used with thrust library.
template <typename Input>
struct IsGreaterEqualThan : public thrust::unary_function<Input, bool>
struct IsGreaterEqualThan
{
__host__ __device__ IsGreaterEqualThan(uint upperBound) :
upperBound_(upperBound) {}

View File

@ -2,7 +2,7 @@
## Description
This sample implements bitonic sort and odd-even merge sort (also known as Batcher's sort), algorithms belonging to the class of sorting networks. While generally subefficient, for large sequences compared to algorithms with better asymptotic algorithmic complexity (i.e. merge sort or radix sort), this may be the preferred algorithms of choice for sorting batches of short-sized to mid-sized (key, value) array pairs. Refer to an excellent tutorial by H. W. Lang http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/networks/indexen.htm
This sample implements bitonic sort and odd-even merge sort (also known as Batcher's sort), algorithms belonging to the class of sorting networks. While generally subefficient, for large sequences compared to algorithms with better asymptotic algorithmic complexity (i.e. merge sort or radix sort), this may be the preferred algorithms of choice for sorting batches of short-sized to mid-sized (key, value) array pairs. Refer to an excellent tutorial by H. W. Lang https://hwlang.de/algorithmen/sortieren/bitonic/bitonicen.htm
## Key Concepts

View File

@ -31,7 +31,6 @@
*/
#include <stdio.h>
#include <string.h>
#include <cstring>
#include <iostream>
#include "cuda.h"
@ -293,6 +292,11 @@ static void memMapGetDeviceFunction(char **argv) {
jitNumOptions, jitOptions,
(void **)jitOptVals));
printf("> PTX JIT log:\n%s\n", jitLogBuffer);
// Clean up dynamically allocated memory
delete[] jitOptions;
delete[] jitOptVals;
delete[] jitLogBuffer;
} else {
checkCudaErrors(cuModuleLoad(&cuModule, module_path.c_str()));
}
@ -379,7 +383,7 @@ static void childProcess(int devId, int id, char **argv) {
// deterministic.
barrierWait(&shm->barrier, &shm->sense, (unsigned int)procCount);
if (id == 0) {
printf("Step %lld done\n", (unsigned long long)i);
printf("Step %llu done\n", (unsigned long long)i);
}
}
@ -489,12 +493,14 @@ static void parentProcess(char *app) {
continue;
}
for (int j = 0; j < nprocesses; j++) {
for (int j = 0; j < selectedDevices.size(); j++) {
int canAccessPeerIJ, canAccessPeerJI;
checkCudaErrors(
cuDeviceCanAccessPeer(&canAccessPeerJI, devices[j], devices[i]));
checkCudaErrors(
cuDeviceCanAccessPeer(&canAccessPeerIJ, devices[i], devices[j]));
checkCudaErrors(cuDeviceCanAccessPeer(&canAccessPeerJI,
devices[selectedDevices[j]],
devices[i]));
checkCudaErrors(cuDeviceCanAccessPeer(&canAccessPeerIJ,
devices[i],
devices[selectedDevices[j]]));
if (!canAccessPeerIJ || !canAccessPeerJI) {
allPeers = false;
break;
@ -509,10 +515,10 @@ static void parentProcess(char *app) {
// setup the peers for the device. For systems that only allow 8
// peers per GPU at a time, this acts to remove devices from CanAccessPeer
for (int j = 0; j < nprocesses; j++) {
checkCudaErrors(cuCtxSetCurrent(ctxs[i]));
checkCudaErrors(cuCtxSetCurrent(ctxs.back()));
checkCudaErrors(cuCtxEnablePeerAccess(ctxs[j], 0));
checkCudaErrors(cuCtxSetCurrent(ctxs[j]));
checkCudaErrors(cuCtxEnablePeerAccess(ctxs[i], 0));
checkCudaErrors(cuCtxEnablePeerAccess(ctxs.back(), 0));
}
selectedDevices.push_back(i);
nprocesses++;
@ -550,7 +556,7 @@ static void parentProcess(char *app) {
// Launch the child processes!
for (i = 0; i < nprocesses; i++) {
char devIdx[10];
char procIdx[10];
char procIdx[12];
char *const args[] = {app, devIdx, procIdx, NULL};
Process process;

View File

@ -231,6 +231,10 @@ int main(int argc, char **argv) {
}
}
if (buffer) {
checkCudaErrors(cudaFree(buffer));
}
cusparseDestroy(cusparseHandle);
cublasDestroy(cublasHandle);
if (matA) {

View File

@ -2,7 +2,7 @@
## Description
This sample demonstrates CUDA-NvSciBuf/NvSciSync Interop. Two CPU threads import the NvSciBuf and NvSciSync into CUDA to perform two image processing algorithms on a ppm image - image rotation in 1st thread &amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp; rgba to grayscale conversion of rotated image in 2nd thread. Currently only supported on Ubuntu 18.04
This sample demonstrates CUDA-NvSciBuf/NvSciSync Interop. Two CPU threads import the NvSciBuf and NvSciSync into CUDA to perform two image processing algorithms on a ppm image - image rotation in 1st thread &amp; rgba to grayscale conversion of rotated image in 2nd thread. Currently only supported on Ubuntu 18.04
## Key Concepts

View File

@ -52,13 +52,14 @@ extern "C" void BlackScholesCall(real &callResult, TOptionData optionData);
// Process single option on CPU
// Note that CPU code is for correctness testing only and not for benchmarking.
////////////////////////////////////////////////////////////////////////////////
extern "C" void binomialOptionsCPU(real &callResult, TOptionData optionData);
extern "C" void binomialOptionsCPU(real &callResult, TOptionData optionData,
option_t option_type);
////////////////////////////////////////////////////////////////////////////////
// Process an array of OptN options on GPU
////////////////////////////////////////////////////////////////////////////////
extern "C" void binomialOptionsGPU(real *callValue, TOptionData *optionData,
int optN);
int optN, option_t option_type);
////////////////////////////////////////////////////////////////////////////////
// Helper function, returning uniformly distributed
@ -103,12 +104,14 @@ int main(int argc, char **argv) {
BlackScholesCall(callValueBS[i], optionData[i]);
}
printf("Running GPU binomial tree...\n");
option_t option_type = EU;
printf("Running GPU binomial tree (EU)...\n");
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
binomialOptionsGPU(callValueGPU, optionData, OPT_N);
binomialOptionsGPU(callValueGPU, optionData, OPT_N, option_type);
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&hTimer);
@ -118,13 +121,13 @@ int main(int argc, char **argv) {
printf("binomialOptionsGPU() time: %f msec\n", gpuTime);
printf("Options per second : %f \n", OPT_N / (gpuTime * 0.001));
printf("Running CPU binomial tree...\n");
printf("Running CPU binomial tree (EU)...\n");
for (i = 0; i < OPT_N; i++) {
binomialOptionsCPU(callValueCPU[i], optionData[i]);
binomialOptionsCPU(callValueCPU[i], optionData[i], option_type);
}
printf("Comparing the results...\n");
printf("Comparing the results (EU)...\n");
sumDelta = 0;
sumRef = 0;
printf("GPU binomial vs. Black-Scholes\n");
@ -170,6 +173,49 @@ int main(int argc, char **argv) {
printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N));
}
if (errorVal > 5e-4) {
printf("Test failed!\n");
exit(EXIT_FAILURE);
}
option_type = NA;
printf("\nRunning GPU binomial tree (NA)...\n");
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
binomialOptionsGPU(callValueGPU, optionData, OPT_N, option_type);
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&hTimer);
gpuTime = sdkGetTimerValue(&hTimer);
printf("Options count : %i \n", OPT_N);
printf("Time steps : %i \n", NUM_STEPS);
printf("binomialOptionsGPU() time: %f msec\n", gpuTime);
printf("Options per second : %f \n", OPT_N / (gpuTime * 0.001));
printf("Running CPU binomial tree (NA)...\n");
for (i = 0; i < OPT_N; i++) {
binomialOptionsCPU(callValueCPU[i], optionData[i], option_type);
}
printf("CPU binomial vs. GPU binomial\n");
sumDelta = 0;
sumRef = 0;
for (i = 0; i < OPT_N; i++) {
sumDelta += fabs(callValueGPU[i] - callValueCPU[i]);
sumRef += callValueCPU[i];
}
if (sumRef > 1E-5) {
printf("L1 norm: %E\n", errorVal = sumDelta / sumRef);
} else {
printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N));
}
printf("Shutting down...\n");
sdkDeleteTimer(&hTimer);

View File

@ -41,6 +41,15 @@ typedef struct {
real V;
} TOptionData;
////////////////////////////////////////////////////////////////////////////////
// Option types
////////////////////////////////////////////////////////////////////////////////
enum option_t
{
NA = 0,
EU,
};
////////////////////////////////////////////////////////////////////////////////
// Global parameters
////////////////////////////////////////////////////////////////////////////////

View File

@ -78,7 +78,8 @@ static real expiryCallValue(real S, real X, real vDt, int i) {
return (d > (real)0) ? d : (real)0;
}
extern "C" void binomialOptionsCPU(real &callResult, TOptionData optionData) {
extern "C" void binomialOptionsCPU(real &callResult, TOptionData optionData,
option_t option_type) {
static real Call[NUM_STEPS + 1];
const real S = optionData.S;
@ -112,9 +113,18 @@ extern "C" void binomialOptionsCPU(real &callResult, TOptionData optionData) {
////////////////////////////////////////////////////////////////////////
// Walk backwards up binomial tree
////////////////////////////////////////////////////////////////////////
for (int i = NUM_STEPS; i > 0; i--)
for (int j = 0; j <= i - 1; j++)
Call[j] = puByDf * Call[j + 1] + pdByDf * Call[j];
for (int i = NUM_STEPS; i > 0; i--) {
for (int j = 0; j <= i - 1; j++) {
real continuation_value = puByDf * Call[j + 1] + pdByDf * Call[j];
if(option_type == NA){
real fwd = S * exp((2*j-i) * vDt);
real exercise_value = (fwd - X) > (real)0 ? (fwd - X) : (real)0;
Call[j] = exercise_value > continuation_value ? exercise_value : continuation_value;
} else if (option_type == EU) {
Call[j] = continuation_value;
}
}
}
callResult = (real)Call[0];
}

View File

@ -74,7 +74,7 @@ __device__ inline double expiryCallValue(double S, double X, double vDt,
#error Bad constants
#endif
__global__ void binomialOptionsKernel() {
__global__ void binomialOptionsKernel(option_t option_type) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ real call_exchange[THREADBLOCK_SIZE + 1];
@ -105,8 +105,20 @@ __global__ void binomialOptionsKernel() {
if (i > final_it) {
#pragma unroll
for (int j = 0; j < ELEMS_PER_THREAD; ++j)
call[j] = puByDf * call[j + 1] + pdByDf * call[j];
for (int j = 0; j < ELEMS_PER_THREAD; ++j) {
real continuation_value = puByDf * call[j + 1] + pdByDf * call[j];
if(option_type == NA){
#ifndef DOUBLE_PRECISION
real fwd = S*__expf(vDt * (2*(tid * ELEMS_PER_THREAD + j) - i));
#else
real fwd = S*exp(vDt * (2*(tid * ELEMS_PER_THREAD + j) - i));
#endif
real exercise_value = ((fwd - X) > (real)0) ? (fwd - X) : (real)0;
call[j] = exercise_value > continuation_value ? exercise_value : continuation_value;
} else if (option_type == EU){
call[j] = continuation_value;
}
}
}
}
@ -119,7 +131,7 @@ __global__ void binomialOptionsKernel() {
// Host-side interface to GPU binomialOptions
////////////////////////////////////////////////////////////////////////////////
extern "C" void binomialOptionsGPU(real *callValue, TOptionData *optionData,
int optN) {
int optN, option_t option_type) {
__TOptionData h_OptionData[MAX_OPTIONS];
for (int i = 0; i < optN; i++) {
@ -150,7 +162,7 @@ extern "C" void binomialOptionsGPU(real *callValue, TOptionData *optionData,
checkCudaErrors(cudaMemcpyToSymbol(d_OptionData, h_OptionData,
optN * sizeof(__TOptionData)));
binomialOptionsKernel<<<optN, THREADBLOCK_SIZE>>>();
binomialOptionsKernel<<<optN, THREADBLOCK_SIZE>>>(option_type);
getLastCudaError("binomialOptionsKernel() execution failed.\n");
checkCudaErrors(
cudaMemcpyFromSymbol(callValue, d_CallValue, optN * sizeof(real)));

View File

@ -416,8 +416,8 @@ void initMC(int argc, char **argv) {
gridSizeLog2.x = n;
}
if (checkCmdLineFlag(argc, (const char **)argv, "gridx")) {
n = getCmdLineArgumentInt(argc, (const char **)argv, "gridx");
if (checkCmdLineFlag(argc, (const char **)argv, "gridy")) {
n = getCmdLineArgumentInt(argc, (const char **)argv, "gridy");
gridSizeLog2.y = n;
}

View File

@ -20,16 +20,19 @@ include_directories(../../../Common)
find_package(Vulkan)
find_package(OpenGL)
# Include the check_include_file macro
include(CheckIncludeFile)
# Check for the GLFW/glfw3.h header
check_include_file("GLFW/glfw3.h" HAVE_GLFW3_H)
# Find GLFW/glfw3.h header for Windows
# Find GLFW header and lib for Windows
if(WIN32)
find_file(GLFW3_H "glfw3.h" PATH "$ENV{GLFW_INCLUDES_DIR}/GLFW")
if(GLFW3_H)
find_file(GLFW3_H "GLFW/glfw3.h" PATH "${GLFW_INCLUDE_DIR}")
find_library(GLFW3_LIB "glfw3" PATH "${GLFW_LIB_DIR}")
if(GLFW3_H AND GLFW3_LIB)
message(STATUS "Found GLFW/glfw3.h and GLFW library.")
set(HAVE_GLFW3_H 1)
endif()
endif()
@ -51,21 +54,22 @@ if(${Vulkan_FOUND})
${Vulkan_INCLUDE_DIRS}
${CUDAToolkit_INCLUDE_DIRS}
)
target_link_libraries(simpleVulkan
${Vulkan_LIBRARIES}
OpenGL::GL
)
if(WIN32)
target_include_directories(simpleVulkan PUBLIC
${GLFW_INCLUDE_DIR}
)
target_link_libraries(simpleVulkan
${Vulkan_LIBRARIES}
OpenGL::GL
glfw3.dll
${GLFW3_LIB}
)
else()
target_link_libraries(simpleVulkan
${Vulkan_LIBRARIES}
OpenGL::GL
glfw
)
endif()
add_custom_command(TARGET simpleVulkan POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different
${CMAKE_CURRENT_SOURCE_DIR}/sinewave.frag

View File

@ -26,10 +26,12 @@ include(CheckIncludeFile)
# Check for the GLFW/glfw3.h header
check_include_file("GLFW/glfw3.h" HAVE_GLFW3_H)
# Find GLFW/glfw3.h header for Windows
# Find GLFW header and lib for Windows
if(WIN32)
find_file(GLFW3_H "glfw3.h" PATH "$ENV{GLFW_INCLUDES_DIR}/GLFW")
if(GLFW3_H)
find_file(GLFW3_H "GLFW/glfw3.h" PATH "${GLFW_INCLUDE_DIR}")
find_library(GLFW3_LIB "glfw3" PATH "${GLFW_LIB_DIR}")
if(GLFW3_H AND GLFW3_LIB)
message(STATUS "Found GLFW/glfw3.h and GLFW library.")
set(HAVE_GLFW3_H 1)
endif()
endif()
@ -51,23 +53,23 @@ if(${Vulkan_FOUND})
${Vulkan_INCLUDE_DIRS}
${CUDAToolkit_INCLUDE_DIRS}
)
target_link_libraries(simpleVulkanMMAP
${Vulkan_LIBRARIES}
OpenGL::GL
CUDA::cuda_driver
)
if(WIN32)
target_include_directories(simpleVulkanMMAP PUBLIC
${GLFW_INCLUDE_DIR}
)
target_link_libraries(simpleVulkanMMAP
${Vulkan_LIBRARIES}
OpenGL::GL
CUDA::cuda_driver
glfw3.dll
${GLFW3_LIB}
)
else()
target_link_libraries(simpleVulkanMMAP
${Vulkan_LIBRARIES}
OpenGL::GL
CUDA::cuda_driver
glfw
)
endif()
add_custom_command(TARGET simpleVulkanMMAP POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different
${CMAKE_CURRENT_SOURCE_DIR}/montecarlo.frag

View File

@ -71,7 +71,7 @@ if(${OpenGL_FOUND})
POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
${CMAKE_CURRENT_SOURCE_DIR}/../../../bin/win64/$<CONFIGURATION>/glew64.dll
${CMAKE_CURRENT_BINARY_DIR}
${CMAKE_CURRENT_BINARY_DIR}/$<CONFIGURATION>
)
endif()

View File

@ -26,10 +26,12 @@ include(CheckIncludeFile)
# Check for the GLFW/glfw3.h header
check_include_file("GLFW/glfw3.h" HAVE_GLFW3_H)
# Find GLFW/glfw3.h header for Windows
# Find GLFW header and lib for Windows
if(WIN32)
find_file(GLFW3_H "glfw3.h" PATH "$ENV{GLFW_INCLUDES_DIR}/GLFW")
if(GLFW3_H)
find_file(GLFW3_H "GLFW/glfw3.h" PATH "${GLFW_INCLUDE_DIR}")
find_file(GLFW3_LIB "glfw3" PATH "${GLFW_LIB_DIR}")
if(GLFW3_H AND GLFW3_LIB)
message(STATUS "Found GLFW/glfw3.h and GLFW library.")
set(HAVE_GLFW3_H 1)
endif()
endif()
@ -51,21 +53,22 @@ if(${Vulkan_FOUND})
${Vulkan_INCLUDE_DIRS}
${CUDAToolkit_INCLUDE_DIRS}
)
target_link_libraries(vulkanImageCUDA
${Vulkan_LIBRARIES}
OpenGL::GL
)
if(WIN32)
target_include_directories(vulkanImageCUDA PUBLIC
${GLFW_INCLUDE_DIR}
)
target_link_libraries(vulkanImageCUDA
${Vulkan_LIBRARIES}
OpenGL::GL
glfw3.dll
${GLFW3_LIB}
)
else()
target_link_libraries(vulkanImageCUDA
${Vulkan_LIBRARIES}
OpenGL::GL
glfw
)
endif()
add_custom_command(TARGET vulkanImageCUDA POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different
${CMAKE_CURRENT_SOURCE_DIR}/shader.frag

View File

@ -53,7 +53,7 @@ const char *sSDKsample = "Transpose";
// TILE_DIM/BLOCK_ROWS elements. TILE_DIM must be an integral multiple of
// BLOCK_ROWS
#define TILE_DIM 16
#define TILE_DIM 32
#define BLOCK_ROWS 16
// This sample assumes that MATRIX_SIZE_X = MATRIX_SIZE_Y