mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-04-24 08:41:23 +01:00

Note that the Black-Scholes method can only be used for the European options. For validating the GPU results the computed prices are only compared to the CPU version of binomial options algorithm.
170 lines
6.3 KiB
Plaintext
170 lines
6.3 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Global types and parameters
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
#include <helper_cuda.h>
|
|
#include "binomialOptions_common.h"
|
|
#include "realtype.h"
|
|
|
|
// Preprocessed input option data
|
|
typedef struct {
|
|
real S;
|
|
real X;
|
|
real vDt;
|
|
real puByDf;
|
|
real pdByDf;
|
|
} __TOptionData;
|
|
static __constant__ __TOptionData d_OptionData[MAX_OPTIONS];
|
|
static __device__ real d_CallValue[MAX_OPTIONS];
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Overloaded shortcut functions for different precision modes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#ifndef DOUBLE_PRECISION
|
|
__device__ inline float expiryCallValue(float S, float X, float vDt, int i) {
|
|
float d = S * __expf(vDt * (2.0f * i - NUM_STEPS)) - X;
|
|
return (d > 0.0F) ? d : 0.0F;
|
|
}
|
|
#else
|
|
__device__ inline double expiryCallValue(double S, double X, double vDt,
|
|
int i) {
|
|
double d = S * exp(vDt * (2.0 * i - NUM_STEPS)) - X;
|
|
return (d > 0.0) ? d : 0.0;
|
|
}
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GPU kernel
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#define THREADBLOCK_SIZE 128
|
|
#define ELEMS_PER_THREAD (NUM_STEPS / THREADBLOCK_SIZE)
|
|
#if NUM_STEPS % THREADBLOCK_SIZE
|
|
#error Bad constants
|
|
#endif
|
|
|
|
__global__ void binomialOptionsKernel(option_t option_type) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ real call_exchange[THREADBLOCK_SIZE + 1];
|
|
|
|
const int tid = threadIdx.x;
|
|
const real S = d_OptionData[blockIdx.x].S;
|
|
const real X = d_OptionData[blockIdx.x].X;
|
|
const real vDt = d_OptionData[blockIdx.x].vDt;
|
|
const real puByDf = d_OptionData[blockIdx.x].puByDf;
|
|
const real pdByDf = d_OptionData[blockIdx.x].pdByDf;
|
|
|
|
real call[ELEMS_PER_THREAD + 1];
|
|
#pragma unroll
|
|
for (int i = 0; i < ELEMS_PER_THREAD; ++i)
|
|
call[i] = expiryCallValue(S, X, vDt, tid * ELEMS_PER_THREAD + i);
|
|
|
|
if (tid == 0)
|
|
call_exchange[THREADBLOCK_SIZE] = expiryCallValue(S, X, vDt, NUM_STEPS);
|
|
|
|
int final_it = max(0, tid * ELEMS_PER_THREAD - 1);
|
|
|
|
#pragma unroll 16
|
|
for (int i = NUM_STEPS; i > 0; --i) {
|
|
call_exchange[tid] = call[0];
|
|
cg::sync(cta);
|
|
call[ELEMS_PER_THREAD] = call_exchange[tid + 1];
|
|
cg::sync(cta);
|
|
|
|
if (i > final_it) {
|
|
#pragma unroll
|
|
for (int j = 0; j < ELEMS_PER_THREAD; ++j) {
|
|
real continuation_value = puByDf * call[j + 1] + pdByDf * call[j];
|
|
if(option_type == NA){
|
|
#ifndef DOUBLE_PRECISION
|
|
real fwd = S*__expf(vDt * (2*(tid * ELEMS_PER_THREAD + j) - i));
|
|
#else
|
|
real fwd = S*exp(vDt * (2*(tid * ELEMS_PER_THREAD + j) - i));
|
|
#endif
|
|
real exercise_value = ((fwd - X) > (real)0) ? (fwd - X) : (real)0;
|
|
call[j] = exercise_value > continuation_value ? exercise_value : continuation_value;
|
|
} else if (option_type == EU){
|
|
call[j] = continuation_value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (tid == 0) {
|
|
d_CallValue[blockIdx.x] = call[0];
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Host-side interface to GPU binomialOptions
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void binomialOptionsGPU(real *callValue, TOptionData *optionData,
|
|
int optN, option_t option_type) {
|
|
__TOptionData h_OptionData[MAX_OPTIONS];
|
|
|
|
for (int i = 0; i < optN; i++) {
|
|
const real T = optionData[i].T;
|
|
const real R = optionData[i].R;
|
|
const real V = optionData[i].V;
|
|
|
|
const real dt = T / (real)NUM_STEPS;
|
|
const real vDt = V * sqrt(dt);
|
|
const real rDt = R * dt;
|
|
// Per-step interest and discount factors
|
|
const real If = exp(rDt);
|
|
const real Df = exp(-rDt);
|
|
// Values and pseudoprobabilities of upward and downward moves
|
|
const real u = exp(vDt);
|
|
const real d = exp(-vDt);
|
|
const real pu = (If - d) / (u - d);
|
|
const real pd = (real)1.0 - pu;
|
|
const real puByDf = pu * Df;
|
|
const real pdByDf = pd * Df;
|
|
|
|
h_OptionData[i].S = (real)optionData[i].S;
|
|
h_OptionData[i].X = (real)optionData[i].X;
|
|
h_OptionData[i].vDt = (real)vDt;
|
|
h_OptionData[i].puByDf = (real)puByDf;
|
|
h_OptionData[i].pdByDf = (real)pdByDf;
|
|
}
|
|
|
|
checkCudaErrors(cudaMemcpyToSymbol(d_OptionData, h_OptionData,
|
|
optN * sizeof(__TOptionData)));
|
|
binomialOptionsKernel<<<optN, THREADBLOCK_SIZE>>>(option_type);
|
|
getLastCudaError("binomialOptionsKernel() execution failed.\n");
|
|
checkCudaErrors(
|
|
cudaMemcpyFromSymbol(callValue, d_CallValue, optN * sizeof(real)));
|
|
}
|