mirror of
https://github.com/ehw-fit/ariths-gen.git
synced 2025-04-10 09:12:11 +01:00
193 lines
7.2 KiB
Python
193 lines
7.2 KiB
Python
"""
|
|
Implementation of QuAdder
|
|
|
|
For more information, see:
|
|
M. A. Hanif, R. Hafiz, O. Hasan and M. Shafique, "QuAd: Design and analysis of Quality-area optimal Low-Latency approximate Adders," 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2017, pp. 1-6, doi: 10.1145/3061639.3062306.
|
|
|
|
"""
|
|
|
|
from ...wire_components import (
|
|
Wire,
|
|
ConstantWireValue0,
|
|
ConstantWireValue1,
|
|
Bus
|
|
)
|
|
from ariths_gen.core.arithmetic_circuits import (
|
|
ArithmeticCircuit,
|
|
MultiplierCircuit
|
|
)
|
|
from ariths_gen.one_bit_circuits.one_bit_components import (
|
|
HalfAdder,
|
|
FullAdder
|
|
)
|
|
from ariths_gen.one_bit_circuits.logic_gates import (
|
|
AndGate,
|
|
NandGate,
|
|
OrGate,
|
|
NorGate,
|
|
XorGate,
|
|
XnorGate,
|
|
NotGate
|
|
)
|
|
from ariths_gen.multi_bit_circuits.adders.ripple_carry_adder import UnsignedRippleCarryAdder
|
|
import warnings
|
|
|
|
|
|
class QuAdder(ArithmeticCircuit):
|
|
"""
|
|
Implementation of QuAd
|
|
|
|
https://ieeexplore.ieee.org/document/8060326
|
|
|
|
The implementation is inspired by Matlab code from the authors of the paper:
|
|
```matlab
|
|
temp_count=1;
|
|
for iij=1:length(R_vect)
|
|
fprintf(fileID,['wire [' num2str(R_vect(iij)+P_vect(iij)) ':0] temp' num2str(temp_count) ';\n']);
|
|
temp_count=temp_count + 1;
|
|
end
|
|
|
|
temp_count=1;
|
|
for iiij=1:length(R_vect)
|
|
if (sum(R_vect(1:iiij))+P_vect(1)-1) == (sum(R_vect(1:iiij))+P_vect(1)-R_vect(iiij)-P_vect(iiij))
|
|
fprintf(fileID,['aassign temp' num2str(temp_count) '[' num2str(R_vect(iiij)+P_vect(iiij)) ':0] = in1[' num2str(sum(R_vect(1:iiij))+P_vect(1)-1) '] + in2[' num2str(sum(R_vect(1:iiij))+P_vect(1)-1) '];\n']);
|
|
else
|
|
disp(R_vect(1:iiij))
|
|
fprintf(fileID,['bassign temp' num2str(temp_count) '[' num2str(R_vect(iiij)+P_vect(iiij)) ':0] = in1[' num2str(sum(R_vect(1:iiij))+P_vect(1)-1) ':' num2str(sum(R_vect(1:iiij))+P_vect(1)-R_vect(iiij)-P_vect(iiij)) '] + in2[' num2str(sum(R_vect(1:iiij))+P_vect(1)-1) ':' num2str(sum(R_vect(1:iiij))+P_vect(1)-R_vect(iiij)-P_vect(iiij)) '];\n']);
|
|
end
|
|
temp_count=temp_count+1;
|
|
end
|
|
|
|
statement='};\n';
|
|
temp_count=1;
|
|
for iiij=1:length(R_vect)
|
|
if iiij ~= length(R_vect)
|
|
if (R_vect(iiij)==1)
|
|
statement = [', temp' num2str(temp_count) '[' num2str(R_vect(iiij)+P_vect(iiij)-1) '] ' statement];
|
|
else
|
|
statement = [', temp' num2str(temp_count) '[' num2str(R_vect(iiij)+P_vect(iiij)-1) ':' num2str(P_vect(iiij)) '] ' statement];
|
|
end
|
|
else
|
|
statement = ['assign res[' num2str(N) ':0] =' '{ temp' num2str(temp_count) '[' num2str(R_vect(iiij)+P_vect(iiij)) ':' num2str(P_vect(iiij)) '] ' statement];
|
|
end
|
|
temp_count=temp_count+1;
|
|
end
|
|
```
|
|
|
|
|
|
"""
|
|
|
|
def log(self, *args):
|
|
if self.use_log:
|
|
print(*args)
|
|
|
|
def __init__(self, a, b, R, P, prefix, name="quad", adder_type=None, use_log=False, **kwargs):
|
|
"""
|
|
:param a: Bus first input
|
|
:param b: Bus second input
|
|
:param R: list of integers, defines the resultant bits of all the sub-adders (the first index specifies the resultant bits of sub-adder 1 and so on)
|
|
:param P: list of integers, defines the prediction bits of all the sub-adders (again the first index specifies the prediction bits of sub-adder 1 and so on)
|
|
"""
|
|
|
|
if not adder_type:
|
|
adder_type = UnsignedRippleCarryAdder
|
|
|
|
# Assumptions checks
|
|
assert len(R) == len(P), "R and P must have the same length"
|
|
print([P[i] < P[i-1] + R[i-1] for i in range(1, len(P))])
|
|
assert all([P[i] < P[i-1] + R[i-1] for i in range(1, len(P))]
|
|
), "Pi must be lower than Pi-1 + Ri-1"
|
|
assert sum(R) == a.N, "Sum of R must be equal to number of bits"
|
|
|
|
self.use_log = use_log
|
|
|
|
self.N = max(a.N, b.N)
|
|
super().__init__(a=a, b=b, prefix=prefix, name=name, out_N=self.N+1, **kwargs)
|
|
|
|
# Bus sign extension in case buses have different lengths
|
|
self.a.bus_extend(N=self.N, prefix=a.prefix)
|
|
self.b.bus_extend(N=self.N, prefix=b.prefix)
|
|
|
|
#warnings.warn("QuAdder is not tested yet")
|
|
|
|
# Connect all outputs to zero
|
|
for i in range(self.N+1):
|
|
self.out[i] = ConstantWireValue0()
|
|
|
|
# Declaration of temporary wires (just for debug purposes)
|
|
temp_count = 0
|
|
for iiij in range(0, len(R)):
|
|
self.log('wire [' + str(R[iiij]+P[iiij]) +
|
|
':0] temp' + str(temp_count) + ';')
|
|
temp_count = temp_count + 1
|
|
|
|
def bus_subconnect(out_bus, in_bus, out_indexes, in_indexes):
|
|
out_indexes = list(out_indexes)
|
|
in_indexes = list(in_indexes)
|
|
assert len(out_indexes) == len(in_indexes)
|
|
|
|
for i, j in zip(out_indexes, in_indexes):
|
|
if j >= in_bus.N:
|
|
out_bus[i] = ConstantWireValue0() # unsigned extension
|
|
else:
|
|
out_bus.connect(i, in_bus.get_wire(j)) # [i] = in_bus[j]
|
|
|
|
# Connection of adders
|
|
temp_count = 0
|
|
temp_bus = []
|
|
for iiij in range(0, len(R)):
|
|
# Former verilog output
|
|
self.log("assign temp{}[{}:0] = in1[{}:{}] + in2[{}:{}];".format(
|
|
temp_count,
|
|
R[iiij]+P[iiij],
|
|
sum(R[0:iiij + 1]) + P[0]-1,
|
|
sum(R[0:iiij + 1]) + P[0]-R[iiij]-P[iiij],
|
|
sum(R[0:iiij + 1]) + P[0]-1,
|
|
sum(R[0:iiij + 1]) + P[0]-R[iiij]-P[iiij]
|
|
))
|
|
|
|
a1 = Bus(f"{prefix}_temp_{temp_count}_a", R[iiij]+P[iiij])
|
|
b1 = Bus(f"{prefix}_temp_{temp_count}_b", R[iiij]+P[iiij])
|
|
|
|
bus_subconnect(b1, self.b,
|
|
range(R[iiij]+P[iiij]),
|
|
range(sum(R[0:iiij + 1])+P[0]-R[iiij]-P[iiij], sum(R[0:iiij + 1])+P[0]))
|
|
|
|
bus_subconnect(a1, self.a,
|
|
range(R[iiij]+P[iiij]),
|
|
range(sum(R[0:iiij + 1])+P[0]-R[iiij]-P[iiij], sum(R[0:iiij + 1])+P[0]))
|
|
|
|
temp_bus.append(self.add_component(
|
|
adder_type(a1, b1, prefix=f"{prefix}_add_{temp_count}")
|
|
|
|
))
|
|
temp_count = temp_count+1
|
|
|
|
# Final connection
|
|
temp_count = 0
|
|
statement = "}"
|
|
wire_id = 0
|
|
for iiij in range(0, len(R)):
|
|
if iiij != len(R) - 1:
|
|
if R[iiij] == 1:
|
|
statement = ', temp{}[{}]'.format(
|
|
temp_count, R[iiij]+P[iiij] - 1) + statement
|
|
else:
|
|
statement = ', temp{}[{}:{}]'.format(
|
|
temp_count, R[iiij]+P[iiij] - 1, P[iiij]) + statement
|
|
|
|
else:
|
|
statement = 'assign res[' + str(self.N) + ':0] =' + '{ temp' + str(
|
|
temp_count) + '[' + str(R[iiij]+P[iiij]) + ':' + str(P[iiij]) + '] ' + statement
|
|
|
|
self.log(statement)
|
|
for i in range(P[iiij], R[iiij]+P[iiij]):
|
|
self.log(temp_count, i, wire_id, temp_bus[temp_count].out[i])
|
|
self.out[wire_id] = temp_bus[temp_count].out[i]
|
|
wire_id += 1
|
|
|
|
temp_count = temp_count+1
|
|
|
|
# Last carry (MSB)
|
|
self.out[wire_id] = temp_bus[temp_count - 1].out[R[iiij]+P[iiij]]
|