Lukas Plevac 09a12f3df7
Some checks failed
CodeQL / Analyze (python) (push) Has been cancelled
BUILD / build (push) Has been cancelled
BUILD / test (push) Has been cancelled
BUILD / Python ${{ matrix.python-version }} test (3.10) (push) Has been cancelled
BUILD / Python ${{ matrix.python-version }} test (3.11) (push) Has been cancelled
BUILD / Python ${{ matrix.python-version }} test (3.7) (push) Has been cancelled
BUILD / Python ${{ matrix.python-version }} test (3.8) (push) Has been cancelled
BUILD / Python ${{ matrix.python-version }} test (3.9) (push) Has been cancelled
BUILD / documentation (push) Has been cancelled
Fully working xorGateComponent
2024-10-10 13:33:09 +02:00

242 lines
16 KiB
Python

from ariths_gen.wire_components import (
ConstantWireValue0,
ConstantWireValue1,
Bus
)
from ariths_gen.core.arithmetic_circuits import (
MultiplierCircuit
)
from ariths_gen.one_bit_circuits.one_bit_components import (
HalfAdder,
FullAdder,
XorGateComponent
)
from ariths_gen.one_bit_circuits.logic_gates import (
AndGate,
NandGate,
NorGate
)
class UnsignedArrayMultiplier(MultiplierCircuit):
"""Class representing unsigned array multiplier.
Unsigned array multiplier represents N-bit multiplier composed of
many AND gates and half/full adders to calculate partial products and
gradually sum them.
Downside is its rather big area because it is composed of many logic gates.
```
A3B0 A2B0 A1B0 A0B0
│ │ │ │ │ │ │ │
┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐
│AND│ │AND│ │AND│ │AND│
└┬──┘ └┬──┘ └┬──┘ └─┬─┘
A3B1 │ A2B1 │ A1B1 │ A0B1 │
┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │
│AND│ │ │AND│ │ │AND│ │ │AND│ │
└┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │
│ │ │ │ │ │ │ │
┌───▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │
│ │ │ │ │ │ │ │ │
┌───────┤ HA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │
│ │ │ │ │ │ │ │ │ │
│ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │
│ A3B2 │ A2B2 │ A1B2 │ A0B2 │ │
│ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │
│ │AND│ │ │AND│ │ │AND│ │ │AND│ │ │
│ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │
│ │ │ │ │ │ │ │ │ │
┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │
│ │ │ │ │ │ │ │ │ │
┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │
│ │ │ │ │ │ │ │ │ │ │
│ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │
│ A3B3 │ A2B3 │ A1B3 │ A0B3 │ │ │
│ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │ │
│ │AND│ │ │AND│ │ │AND│ │ │AND│ │ │ │
│ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │
│ │ │ │ │ │ │ │ │ │ │
┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │
│ │ │ │ │ │ │ │ │ │ │
┌──────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ │ │ │
│ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
P7 P6 P5 P4 P3 P2 P1 P0
```
Description of the __init__ method.
Args:
a (Bus): First input bus.
b (Bus): Second input bus.
prefix (str, optional): Prefix name of unsigned array multiplier. Defaults to "".
name (str, optional): Name of unsigned array multiplier. Defaults to "u_arrmul".
"""
def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "u_arrmul", **kwargs):
self.N = max(a.N, b.N)
super().__init__(inputs=[a, b], prefix=prefix, name=name, out_N=self.N*2, **kwargs)
# Bus sign extension in case buses have different lengths
self.a.bus_extend(N=self.N, prefix=a.prefix)
self.b.bus_extend(N=self.N, prefix=b.prefix)
# Gradual generation of partial products
for b_multiplier_index in range(self.N):
for a_multiplicand_index in range(self.N):
# AND gates generation for calculation of partial products
obj_and = AndGate(self.a.get_wire(a_multiplicand_index), self.b.get_wire(b_multiplier_index), prefix=self.prefix+"_and"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_and)
if b_multiplier_index != 0:
previous_product = self.components[a_multiplicand_index + b_multiplier_index].out if b_multiplier_index == 1 else self.get_previous_partial_product(a_index=a_multiplicand_index, b_index=b_multiplier_index)
# HA generation for first 1-bit adder in each row starting from the second one
if a_multiplicand_index == 0:
obj_adder = HalfAdder(self.get_previous_component().out, previous_product, prefix=self.prefix+"_ha"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# Product generation
self.out.connect(b_multiplier_index, obj_adder.get_sum_wire())
# HA generation, last 1-bit adder in second row
elif a_multiplicand_index == self.N-1 and b_multiplier_index == 1:
obj_adder = HalfAdder(self.get_previous_component().out, self.get_previous_component(number=2).get_carry_wire(), prefix=self.prefix+"_ha"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# FA generation
else:
obj_adder = FullAdder(self.get_previous_component().out, previous_product, self.get_previous_component(number=2).get_carry_wire(), prefix=self.prefix+"_fa"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# PRODUCT GENERATION
if a_multiplicand_index == 0 and b_multiplier_index == 0:
self.out.connect(a_multiplicand_index, obj_and.out)
# 1 bit multiplier case
if a_multiplicand_index == self.N-1:
self.out.connect(a_multiplicand_index+1, ConstantWireValue0())
elif b_multiplier_index == self.N-1:
self.out.connect(b_multiplier_index + a_multiplicand_index, obj_adder.get_sum_wire())
if a_multiplicand_index == self.N-1:
self.out.connect(self.out.N-1, obj_adder.get_carry_wire())
class SignedArrayMultiplier(MultiplierCircuit):
"""Class representing signed array multiplier.
Signed array multiplier represents N-bit multiplier composed of
many AND/NAND gates and half/full adders to calculate partial products and
gradually sum them.
Downside is its rather big area because it is composed of many logic gates.
```
A3B0 A2B0 A1B0 A0B0
│ │ │ │ │ │ │ │
┌▼─▼─┐ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐
│NAND│ │AND│ │AND│ │AND│
└┬───┘ └┬──┘ └┬──┘ └─┬─┘
A3B1 │ A2B1 │ A1B1 │ A0B1 │
┌▼─▼─┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │
│NAND│ │ │AND│ │ │AND│ │ │AND│ │
1 └┬───┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │
│ │ │ │ │ │ │ │ │
┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │
│ │ │ │ │ │ │ │ │
┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │
│ │ │ │ │ │ │ │ │ │
│ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │
│ A3B2 │ A2B2 │ A1B2 │ A0B2 │ │
│ ┌▼─▼─┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │
│ │NAND│ │ │AND│ │ │AND│ │ │AND│ │ │
│ └┬───┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │
│ │ │ │ │ │ │ │ │ │
┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │
│ │ │ │ │ │ │ │ │ │
┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │
│ │ │ │ │ │ │ │ │ │ │
│ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │
│ A3B3 │ A2B3 │ A1B3 │ A0B3 │ │ │
│ ┌▼─▼┐ │ ┌▼─▼─┐ │ ┌▼─▼─┐ │ ┌▼─▼─┐ │ │ │
│ │AND│ │ │NAND│ │ │NAND│ │ │NAND│ │ │ │
1 │ └┬──┘ │ └┬───┘ │ └┬───┘ │ └┬───┘ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
┌─▼──┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │
│XOR │◄──┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │
└─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ │ │ │
│ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
P7 P6 P5 P4 P3 P2 P1 P0
```
Description of the __init__ method.
Args:
a (Bus): First input bus.
b (Bus): Second input bus.
prefix (str, optional): Prefix name of signed array multiplier. Defaults to "".
name (str, optional): Name of signed array multiplier. Defaults to "s_arrmul".
"""
def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "s_arrmul", **kwargs):
self.N = max(a.N, b.N)
super().__init__(inputs=[a, b], prefix=prefix, name=name, out_N=self.N*2, signed=True, **kwargs)
# Bus sign extension in case buses have different lengths
self.a.bus_extend(N=self.N, prefix=a.prefix)
self.b.bus_extend(N=self.N, prefix=b.prefix)
# Gradual generation of partial products
for b_multiplier_index in range(self.N):
for a_multiplicand_index in range(self.N):
# AND and NAND gates generation for calculation of partial products and sign extension
if (b_multiplier_index == self.N-1 and a_multiplicand_index != self.N-1) or (b_multiplier_index != self.N-1 and a_multiplicand_index == self.N-1):
obj_nand = NandGate(self.a.get_wire(a_multiplicand_index), self.b.get_wire(b_multiplier_index), prefix=self.prefix+"_nand"+str(a_multiplicand_index)+"_"+str(b_multiplier_index), parent_component=self)
self.add_component(obj_nand)
else:
obj_and = AndGate(self.a.get_wire(a_multiplicand_index), self.b.get_wire(b_multiplier_index), prefix=self.prefix+"_and"+str(a_multiplicand_index)+"_"+str(b_multiplier_index), parent_component=self)
self.add_component(obj_and)
if b_multiplier_index != 0:
previous_product = self.components[a_multiplicand_index + b_multiplier_index].out if b_multiplier_index == 1 else self.get_previous_partial_product(a_index=a_multiplicand_index, b_index=b_multiplier_index)
# HA generation for first 1-bit adder in each row starting from the second one
if a_multiplicand_index == 0:
obj_adder = HalfAdder(self.get_previous_component().out, previous_product, prefix=self.prefix+"_ha"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# Product generation
self.out.connect(b_multiplier_index, obj_adder.get_sum_wire())
# FA generation
else:
# Constant wire with value 1 used at the last FA in second row (as one of its inputs) for signed multiplication (based on Baugh Wooley algorithm)
if a_multiplicand_index == self.N-1 and b_multiplier_index == 1:
previous_product = ConstantWireValue1()
obj_adder = FullAdder(self.get_previous_component().out, previous_product, self.get_previous_component(number=2).get_carry_wire(), prefix=self.prefix+"_fa"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# PRODUCT GENERATION
if a_multiplicand_index == 0 and b_multiplier_index == 0:
self.out.connect(a_multiplicand_index, obj_and.out)
# 1 bit multiplier case
if a_multiplicand_index == self.N-1:
obj_nor = NorGate(ConstantWireValue1(), self.get_previous_component().out, prefix=self.prefix+"_nor_zero_extend", parent_component=self)
self.add_component(obj_nor)
self.out.connect(a_multiplicand_index+1, obj_nor.out)
elif b_multiplier_index == self.N-1:
self.out.connect(b_multiplier_index + a_multiplicand_index, obj_adder.get_sum_wire())
if a_multiplicand_index == self.N-1:
obj_xor = XorGateComponent(self.get_previous_component().get_carry_wire(), ConstantWireValue1(), prefix=self.prefix+"_xor"+str(a_multiplicand_index+1)+"_"+str(b_multiplier_index), parent_component=self)
self.add_component(obj_xor)
self.out.connect(self.out.N-1, obj_xor.out.get_wire(0))