Added c code generation for logic gates, one bit adders, rca.

This commit is contained in:
root 2020-12-11 22:57:32 +01:00
parent f18f6159f5
commit 01f473e727

View File

@ -2,22 +2,34 @@
#todo ??
class wire():
def __init__(self, index):
self.index = index
self.value = 0
def __init__(self, value=0):
#todo nechat inicializaci?
self.value = value
self.id=None
def add_wire_id(self, wire_id):
self.id = wire_id
def get_wire_id(self):
return self.id
class bus():
#inicializace sbernice
def __init__(self, N=1):
self.bus = [wire(index=i) for i in range(N)]
self.bus = [wire() for i in range(N)]
self.N = N
#vraci drat na prislusnem indexu sbernice
def get(self, wire_index):
def get_wire(self, wire_index):
return self.bus[wire_index]
def add_wire_id(self, wire_id, wire_index=0):
self.bus[wire_index].id = wire_id
def get_wire_id(self, wire_index):
return self.bus[wire_index].id
#vraci logickou hodnotu vedenou na drate s prislusnym indexem
def get_value(self, wire_index):
def get_wire_value(self, wire_index):
return self.bus[wire_index].value
#pripojeni vstupni, vystupni hodnoty komponenty k sbernici
@ -25,308 +37,389 @@ class bus():
self.bus[wire_index].value = component_output_value
#KOMPONENTY HRADEL
#jednovstupove
class not_gate():
def __init__(self, input_a):
self.gate_type = "not_gate"
if input_a == 1:
self.y = 0
else:
self.y = 1
class logic_gate():
def export_to_C(self, filename, main_component=True, file_object=None, wire_id=0, line_var_cnt=0, init_run=True):
with open(filename,'w') as f:
if main_component == True:
if main_component == True:
with open(filename,'w') as f:
f.write('#include <stdint.h>\n\n')
f.write('uint8_t not_gate(uint8_t a) {\n')
f.write(' uint8_t y;\n')
f.write(' uint8_t n1 = (a >> 0) & 0x1;\n')
f.write(' y = ~n1;\n')
if self.gate_type == 'not_gate':
f.write('uint8_t not_gate(uint8_t a) {\n')
f.write(' uint8_t y = 0;\n')
f.write(' uint8_t n1 = (a >> 0) & 0x1;\n')
f.write(' y |= (~n1 & 0x01) << 0;\n')
elif self.gate_type == 'and_gate':
f.write('uint8_t and_gate(uint8_t a, uint8_t b) {\n')
f.write(' uint8_t y = 0;\n')
f.write(' uint8_t n1 = (a >> 0) & 0x1;\n')
f.write(' uint8_t n2 = (b >> 0) & 0x1;\n')
f.write(' y |= ((n1 & n2) & 0x01) << 0;\n')
elif self.gate_type == 'or_gate':
f.write('uint8_t or_gate(uint8_t a, uint8_t b) {\n')
f.write(' uint8_t y = 0;\n')
f.write(' uint8_t n1 = (a >> 0) & 0x1;\n')
f.write(' uint8_t n2 = (b >> 0) & 0x1;\n')
f.write(' y |= ((n1 | n2) & 0x01) << 0;\n')
elif self.gate_type == 'xor_gate':
f.write('uint8_t xor_gate(uint8_t a, uint8_t b) {\n')
f.write(' uint8_t y = 0;\n')
f.write(' uint8_t n1 = (a >> 0) & 0x1;\n')
f.write(' uint8_t n2 = (b >> 0) & 0x1;\n')
f.write(' y |= ((n1 ^ n2) & 0x01) << 0;\n')
f.write(' return y;\n')
f.write('}\n')
else:
if init_run == True:
if line_var_cnt != 0:
file_object.write(', ')
file_object.write(f'n_{wire_id}=0')
else:
if init_run == True:
if line_var_cnt == 0:
file_object.write(' uint8_t ')
else:
pass
file_object.write(', ')
file_object.write(f'n_{wire_id}=0')
self.y.add_wire_id(wire_id)
else:
if self.gate_type == 'not_gate':
file_object.write(f' n_{self.y.get_wire_id()} = ~n_{self.input.get_wire_id(0)};\n')
else:
file_object.write(f' n_{self.y.get_wire_id()} = n_{self.input.get_wire_id(0)} {self.operator} n_{self.input.get_wire_id(1)};\n')
#jednovstupove
class not_gate(logic_gate):
def __init__(self, input_wire_a):
self.gate_type = 'not_gate'
self.wires_N = 2
self.input = bus(1)
self.input.bus[0] = input_wire_a
if input_wire_a.value == 1:
self.y = wire(0)
else:
self.y = wire(1)
#dvouvstupove
class or_gate():
def __init__(self, input_a, input_b):
self.gate_type = "or_gate"
if (input_a == 1 or input_b == 1):
self.y = 1
class and_gate(logic_gate):
def __init__(self, input_wire_a, input_wire_b):
self.gate_type = 'and_gate'
self.wires_N = 3
self.operator = '&'
self.input = bus(2)
self.input.bus[0] = input_wire_a
self.input.bus[1] = input_wire_b
if input_wire_a.value == 1 and input_wire_b.value == 1:
self.y = wire(1)
else:
self.y = 0
self.y = wire(0)
def export_to_C(self, filename, main_component=True, file_object=None, wire_id=0, line_var_cnt=0, init_run=True):
with open(filename,'w') as f:
if main_component == True:
f.write('#include <stdint.h>\n\n')
f.write('uint8_t or_gate(uint8_t a, uint8_t b) {\n')
f.write(' uint8_t y;\n')
f.write(' uint8_t n1 = (a >> 0) & 0x1;\n')
f.write(' uint8_t n2 = (b >> 0) & 0x1;\n')
f.write(' y = n1 | n2;\n')
f.write(' return y;\n')
f.write('}\n')
else:
#todo wtf
if init_run == True:
if line_var_cnt != 0:
file_object.write(', ')
file_object.write(f'n_{wire_id}=0')
else:
pass
class xor_gate():
def __init__(self, input_a, input_b):
self.gate_type = "xor_gate"
if (input_a == 1 and input_b == 0) or (input_a == 0 and input_b == 1):
self.y = 1
class or_gate(logic_gate):
def __init__(self, input_wire_a, input_wire_b):
self.gate_type = 'or_gate'
self.wires_N = 3
self.operator = '|'
self.input = bus(2)
self.input.bus[0] = input_wire_a
self.input.bus[1] = input_wire_b
if input_wire_a.value == 1 or input_wire_b.value == 1:
self.y = wire(1)
else:
self.y = 0
self.y = wire(0)
def export_to_C(self, filename, main_component=True, file_object=None, wire_id=0, line_var_cnt=0, init_run=True):
with open(filename,'w') as f:
if main_component == True:
f.write('#include <stdint.h>\n\n')
f.write('uint8_t xor_gate(uint8_t a, uint8_t b) {\n')
f.write(' uint8_t y;\n')
f.write(' uint8_t n1 = (a >> 0) & 0x1;\n')
f.write(' uint8_t n2 = (b >> 0) & 0x1;\n')
f.write(' y = n1 ^ n2;\n')
f.write(' return y;\n')
f.write('}\n')
else:
if init_run == True:
if line_var_cnt != 0:
file_object.write(', ')
file_object.write(f'n_{wire_id}=0')
else:
pass
class and_gate():
def __init__(self, input_a, input_b):
self.gate_type = "and_gate"
if input_a == 1 and input_b == 1:
self.y = 1
class xor_gate(logic_gate):
def __init__(self, input_wire_a, input_wire_b):
self.gate_type = 'xor_gate'
self.wires_N = 3
self.operator = '^'
self.input = bus(2)
self.input.bus[0] = input_wire_a
self.input.bus[1] = input_wire_b
if (input_wire_a.value == 1 and input_wire_b.value == 0) or (input_wire_a.value == 0 and input_wire_b.value == 1):
self.y = wire(1)
else:
self.y = 0
def export_to_C(self, filename, main_component=True, file_object=None, wire_id=0, line_var_cnt=0, init_run=True):
with open(filename,'w') as f:
if main_component == True:
f.write('#include <stdint.h>\n\n')
f.write('uint8_t and_gate(uint8_t a, uint8_t b) {\n')
f.write(' uint8_t y;\n')
f.write(' uint8_t n1 = (a >> 0) & 0x1;\n')
f.write(' uint8_t n2 = (b >> 0) & 0x1;\n')
f.write(' y = n1 & n2;\n')
f.write(' return y;\n')
f.write('}\n')
else:
if init_run == True:
if line_var_cnt != 0:
file_object.write(', ')
file_object.write(f'n_{wire_id}=0')
else:
pass
self.y = wire(0)
#ARITMETICKE OBVODY
class arithmetic_circuit():
def __init__(self):
self.component_list = []
self.input_N = 0
self.carry_out_gate = None
self.sum_out_gates = []
def add_component(self, component):
self.component_list.append(component)
def get_component_index(self, component):
return self.component_list.index(component)
def get_previous_component(self):
return self.component_list[-1]
#zpravidla posledni bit ve vystupnim vektoru bitu
def get_carry_out(self):
return self.out.get(-1).value
#pomocna funkce
def wire_index_offset(self, index):
return index
def get_carry_out_wire(self):
return self.carry_out_gate.y
#todo jinak zpravidla posledni bit ve vystupnim vektoru bitu
def get_carry_out_val(self):
return self.carry_out_gate.value
def get_sum_out(self, index):
#todo
def get_sum_out_val(self, index):
return self.out.get_value(index)
#Export do jinych reprezentaci
def export_to_C(self, filename, main_component=True, file_object=None, wire_id=0, line_var_cnt=0, init_run=True):
self.line_wires_cnt = 0
if main_component == True:
with open(filename,'w') as f:
f.write('#include <stdint.h>\n\n')
#DEKLARACE FUNKCE PRO DANY TYP OBVODU
##
if self.circuit_type == 'ha':
f.write('uint8_t ha(uint8_t a, uint8_t b) {\n')
f.write(' uint8_t out = 0;\n')
elif self.circuit_type == 'fa':
f.write('uint8_t fa(uint8_t a, uint8_t b, uint8_t cin) {\n')
f.write(' uint8_t out = 0;\n')
else:
f.write(f'uint64_t {self.circuit_type}(uint64_t a, uint64_t b) ')
f.write('{\n')
elif self.circuit_type == 'rca_'+str(int(self.input_N/2)):
f.write('uint64_t rca(uint64_t a, uint64_t b) {\n')
f.write(' uint64_t out = 0;\n')
f.write('uint8_t ')
for component in self.component_list:
component.export_to_C(filename, False)
#DEKLARACE DRATU
##
#deklarace vstupu obvodu
for in_wire_index in range(self.input_N):
if line_var_cnt == 0:
f.write(' uint8_t ')
else:
f.write(', ')
f.write(f'n_{in_wire_index}=0')
self.inputs.add_wire_id(wire_id, in_wire_index)
line_var_cnt += 1
wire_id += 1
#deklarace vstupu a vystupu hradel vnitrni logiky obvodu
if self.circuit_type != 'ha' and self.circuit_type != 'fa':
for component in self.component_list:
if component.circuit_type == 'ha':
component.export_to_C(filename, False, file_object=f, wire_id=wire_id, line_var_cnt=line_var_cnt)
wire_id += 2
line_var_cnt += 2
elif component.circuit_type == 'fa':
component.export_to_C(filename, False, file_object=f, wire_id=wire_id, line_var_cnt=line_var_cnt)
wire_id += 5
line_var_cnt += 5
else:
for component in self.component_list:
#zapis 8 promennych na radek, odradkovani pro prehlednost
if line_var_cnt >= 8:
f.write(';\n')
line_var_cnt = 0
component.export_to_C(filename, False, file_object=f, wire_id=wire_id, line_var_cnt=line_var_cnt)
wire_id += 1
line_var_cnt += 1
f.write(';\n')
#PRIRAZENI VSTUPNICH HODNOT K DRATUM
if self.circuit_type == 'fa':
f.write(f' n_{self.inputs.get_wire_id(0)} = (a >> 0) & 0x1;\n')
f.write(f' n_{self.inputs.get_wire_id(1)} = (b >> 0) & 0x1;\n')
f.write(f' n_{self.inputs.get_wire_id(2)} = (cin >> 0) & 0x1;\n')
else:
for in_wire_index in range(0, int(self.input_N/2)):
f.write(f' n_{self.inputs.get_wire_id(in_wire_index)} = (a >> {in_wire_index}) & 0x1;\n')
for in_wire_index in range(0, int(self.input_N/2)):
f.write(f' n_{self.inputs.get_wire_id(in_wire_index + int(self.input_N/2))} = (b >> {in_wire_index}) & 0x1;\n')
#VYPOCTY VYSTUPNICH HODNOT HRADEL
##
for component in self.component_list:
component.export_to_C(filename, False, file_object=f, init_run=False)
#PRIRAZENI VYSTUPU
##
for out_wire_index in range(self.out.N):
if self.circuit_type != 'ha' and self.circuit_type != 'fa':
if out_wire_index == (self.out.N)-1:
out_component_index = self.component_list[out_wire_index-1].get_component_index(self.carry_out_gate)
component = self.component_list[out_wire_index-1]
else:
out_component_index = self.component_list[out_wire_index].get_component_index(self.sum_out_gates[out_wire_index])
component = self.component_list[out_wire_index]
if component.circuit_type == 'ha':
out_component_index = out_component_index * out_wire_index
elif component.circuit_type == 'fa':
if out_wire_index == (self.out.N)-1:
out_component_index += 5 * (out_wire_index-2) + 2
else:
out_component_index += 5 * (out_wire_index-1) + 2
wire_id = self.wire_index_offset(out_component_index+self.input_N)
f.write(f' out |= (n_{wire_id} & 0x01) << {out_wire_index};\n')
else:
#Cout
if out_wire_index == (self.out.N)-1:
out_component_index = self.get_component_index(self.carry_out_gate)
#Sum
else:
out_component_index = self.get_component_index(self.sum_out_gates[out_wire_index])
wire_id = self.wire_index_offset(out_component_index+self.input_N)
f.write(f' out |= (n_{wire_id} & 0x01) << {out_wire_index};\n')
f.write(' return out;\n')
f.write('}\n')
else:
if init_run == True:
for component in self.component_list:
#zapis 8 promennych na radek, odradkovani pro prehlednost
if line_var_cnt >= 8:
file_object.write(';\n')
line_var_cnt = 0
component.export_to_C(filename, False, file_object=file_object, wire_id=wire_id, line_var_cnt=line_var_cnt)
wire_id += 1
line_var_cnt += 1
else:
for component in self.component_list:
component.export_to_C(filename, False, file_object=file_object, init_run=False)
class half_adder(arithmetic_circuit):
def __init__(self, input_a, input_b):
def __init__(self, input_wire_a, input_wire_b):
super().__init__()
self.circuit_type = "ha"
self.input_N = 2
self.circuit_type = 'ha'
self.inputs = bus(self.input_N)
self.inputs.bus[0] = input_wire_a
self.inputs.bus[1] = input_wire_b
#2 draty pro vystupy komponenty (sum, cout)
self.out = bus(2)
#Sum
#XOR hradlo pro vypocet jednobitového souctu (sum)
obj_xor_gate = xor_gate(input_a, input_b)
obj_xor_gate = xor_gate(input_wire_a, input_wire_b)
self.add_component(obj_xor_gate)
self.out.connect(0,obj_xor_gate.y)
self.sum_out_gates.append(obj_xor_gate)
#Cout
#AND hradlo pro vypocet jednobitoveho priznaku prenosu do vyssiho radu (cout)jednobitového souctu (sum)
obj_and_gate = and_gate(input_a, input_b)
obj_and_gate = and_gate(input_wire_a, input_wire_b)
self.add_component(obj_and_gate)
self.out.connect(1,obj_and_gate.y)
def get_sum_out(self):
return self.out.get(0).value
self.carry_out_gate = obj_and_gate
def export_to_C(self, filename, main_component=True, file_object=None, wire_id=0, line_var_cnt=0, init_run=True):
if main_component == True:
with open(filename,'w') as f:
f.write('#include <stdint.h>\n\n')
f.write('uint8_t ha(uint8_t a, uint8_t b) {\n')
f.write(' uint8_t out = 0;\n')
f.write(' uint8_t ')
def get_sum_out_component(self):
return self.component_list[0]
#inicializace vstupu
for component in self.component_list:
component.export_to_C(filename, False, file_object=f, wire_id=wire_id, line_var_cnt=line_var_cnt)
wire_id +=1
line_var_cnt +=1
if line_var_cnt == 8:
line_var_cnt = 0
f.write(';\n')
wire_id=0
#prirazeni hodnot
for component in self.component_list:
component.export_to_C(filename, False, file_object=f, wire_id=wire_id, init_run=False)
wire_id +=1
f.write(';\n')
f.write(' return out;\n')
f.write('}\n')
else:
pass
def get_sum_out_wire(self):
return self.out.get_wire(0)
class full_adder(arithmetic_circuit):
def __init__(self, input_a, input_b, carry_in):
def __init__(self, input_wire_a, input_wire_b, carry_in_wire):
super().__init__()
self.circuit_type = "fa"
self.input_N = 3
self.circuit_type = 'fa'
self.inputs = bus(self.input_N)
self.inputs.bus[0] = input_wire_a
self.inputs.bus[1] = input_wire_b
self.inputs.bus[2] = carry_in_wire
#2 draty pro vystupy komponenty (sum, cout)
self.out = bus(2)
#PG logika
propagate_xor_gate1 = xor_gate(input_a, input_b)
propagate_xor_gate1 = xor_gate(input_wire_a, input_wire_b)
self.add_component(propagate_xor_gate1)
generate_and_gate1 = and_gate(input_a, input_b)
generate_and_gate1 = and_gate(input_wire_a, input_wire_b)
self.add_component(generate_and_gate1)
#Sum
#XOR hradlo pro vypocet jednobitového souctu (sum)
obj_xor_gate2 = xor_gate(propagate_xor_gate1.y, carry_in)
obj_xor_gate2 = xor_gate(propagate_xor_gate1.y, carry_in_wire)
self.add_component(obj_xor_gate2)
self.out.connect(0,obj_xor_gate2.y)
self.sum_out_gates.append(obj_xor_gate2)
#Cout
#AND hradlo pro vypocet jednobitoveho priznaku prenosu do vyssiho radu (cout)jednobitového souctu (sum)
obj_and_gate2 = and_gate(propagate_xor_gate1.y, carry_in)
obj_and_gate2 = and_gate(propagate_xor_gate1.y, carry_in_wire)
self.add_component(obj_and_gate2)
obj_or_gate = or_gate(generate_and_gate1.y, obj_and_gate2.y)
self.add_component(obj_or_gate)
self.out.connect(1,obj_or_gate.y)
self.carry_out_gate = obj_or_gate
#todo nechat?
self.propagate = propagate_xor_gate1.y
self.generate = generate_and_gate1.y
def get_sum_out(self):
return self.out.get(0).value
def export_to_C(self, filename, main_component=True, file_object=None, wire_id=0, line_var_cnt=0, mode):
if main_component == True:
with open(filename,'w') as f:
f.write('#include <stdint.h>\n\n')
f.write('uint8_t fa(uint8_t a, uint8_t b, uint8_t cin) {\n')
f.write(' uint8_t out = 0;\n')
f.write(' uint8_t ')
for component in self.component_list:
component.export_to_C(filename, False, file_object=f, wire_id=wire_id, line_var_cnt=line_var_cnt)
wire_id +=1
line_var_cnt +=1
if line_var_cnt == 8:
f.write(';\n')
def get_sum_out_component(self):
return self.component_list[0]
def get_sum_out_wire(self):
return self.out.get_wire(0)
f.write(';\n')
f.write(' return out;\n')
f.write('}\n')
else:
pass
class ripple_carry_adder(arithmetic_circuit):
def __init__(self, input_bus_a, input_bus_b):
super().__init__()
#todo zeptat se
N = max(input_bus_a.N,input_bus_b.N)
self.circuit_type = "rca_"+str(N)
self.input_N = N * 2
self.circuit_type = 'rca_'+str(N)
self.sum_out_gates= []
self.inputs = bus(self.input_N)
for i in range(N):
self.inputs.bus[i] = input_bus_a.get_wire(i)
for i in range(N):
self.inputs.bus[i+N] = input_bus_b.get_wire(i)
#vystupni draty pro N souctu a vystupni priznak prenosu do vyssiho radu (cout)
self.out = bus(N+1)
#postupne pridani jednobitovych scitacek
for input_index in range(N):
#prvni je polovicni scitacka
if input_index == 0:
obj_ha = half_adder(input_bus_a.get_value(input_index), input_bus_b.get_value(input_index))
obj_ha = half_adder(input_bus_a.get_wire(input_index), input_bus_b.get_wire(input_index))
self.add_component(obj_ha)
self.out.connect(input_index, obj_ha.get_sum_out())
self.out.connect(input_index, obj_ha)
self.sum_out_gates.append(obj_ha.sum_out_gates[0])
else:
obj_fa = full_adder(input_bus_a.get_value(input_index), input_bus_b.get_value(input_index), self.get_previous_component().get_carry_out())
obj_fa = full_adder(input_bus_a.get_wire(input_index), input_bus_b.get_wire(input_index), self.get_previous_component().get_carry_out_wire())
self.add_component(obj_fa)
self.out.connect(input_index, obj_fa.get_sum_out())
self.out.connect(input_index, obj_fa.get_sum_out_wire())
self.sum_out_gates.append(obj_fa.sum_out_gates[0])
if input_index == (N-1):
self.out.connect(N, obj_fa.get_carry_out())
#Export do jinych reprezentaci
#todo
self.out.connect(N, obj_fa.get_carry_out_wire())
self.carry_out_gate = obj_fa.carry_out_gate