easyconfigs-it4i/ARCHIVE/m/MPI/MPI-LIBLINEAR-2.11-intel-2017a.eb
Lukas Krupcik 182459da35 deleted: "a/ANSYS/\\"
deleted:    a/Anaconda2/Anaconda2-4.4.0.eb
	deleted:    a/Anaconda3/Anaconda3-2019.10.eb
	deleted:    a/Anaconda3/Anaconda3-4.4.0.eb
	deleted:    a/Anaconda3/Anaconda3-5.3.1.eb
	deleted:    a/Autotools/Autotools-20150215-GCC-6.3.0-2.27.eb
	deleted:    a/Autotools/Autotools-20170619.eb
	deleted:    a/Autotools/Autotools-20180311.eb
2022-05-05 11:22:37 +02:00

31 lines
1.1 KiB
Plaintext

easyblock = 'MakeCp'
name = 'MPI-LIBLINEAR'
version = '2.1-1'
homepage = 'https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/mpi/'
description = """MPI LIBLINEAR is an extension of LIBLINEAR on distributed environments. The usage and the data format are the same as LIBLINEAR.
It supports L2-regularized logistic regression, L2-regularized logistic regression, L2-regularized L2-loss linear SVM (primal trust-region Newton),
L2-regularized L1-loss linear SVM (dual), L2-regularized logistic regression (primal limited common directions),
L2-regularized L2-loss linear SVM (primal limited common directions). Module created by the PERMON Team (http://permon.it4i.cz)."""
toolchain = {'name': 'intel', 'version': '2017a'}
source_urls = [homepage]
sources = [SOURCELOWER_ZIP]
patches = ['INTEL_parallel-make.patch']
files_to_copy = [(['train', 'predict', 'split.py'], 'bin')]
sanity_check_paths = {
'files': ['bin/%s' % x for x in ['train', 'predict', 'split.py']],
'dirs': [],
}
modextrapaths = {
'PATH': ['bin'],
}
moduleclass = 'numlib'