easyconfigs-it4i/n/numactl/numactl-2.0.11-c7.eb
Lukáš Krupčík 73be42b3f9 new file: e/enum34/enum34-1.1.6-Py-3.6.eb
new file:   f/funcsigs/funcsigs-1.0.2-Py-3.6.eb
	modified:   g/GDAL/GDAL-2.3.2-Py-2.7.eb
	new file:   h/hwloc/hwloc-1.11.7-c7.eb
	new file:   k/Keras_Applications/Keras_Applications-1.0.6-Py-3.6.eb
	new file:   k/Keras_Preprocessing/Keras_Preprocessing-1.0.5-Py-3.6.eb
	new file:   m/mock/mock-2.0.0-Py-3.6.eb
	new file:   n/numactl/numactl-2.0.11-c7.eb
	new file:   n/numpy/numpy-1.15.4-Py-3.6.eb
	modified:   o/OpenMPI/OpenMPI-1.10.7-PGI-18.5-GCC-6.3.0-2.27.eb
	new file:   o/OpenMPI/OpenMPI-2.1.1-c7.eb
	new file:   p/pbr/pbr-5.1.1-Py-3.6.eb
	new file:   p/protobuf-python/protobuf-python-3.6.1-Py-3.6.eb
	new file:   p/protobuf/protobuf-3.6.1-Py-3.6.eb
	new file:   r/RDKit/RDKit-2018.09.1-foss-2017a-Py-2.7.eb
	new file:   t/Tensorflow/Tensorflow-1.12.0-GCC-6.3.0-2.27-Py-3.6.eb
2018-11-26 12:10:01 +01:00

34 lines
921 B
Plaintext

# IT4Innovations 2018
easyblock = 'ConfigureMake'
name = 'numactl'
version = '2.0.11'
versionsuffix= '-c7'
homepage = 'http://oss.sgi.com/projects/libnuma/'
description = """The numactl program allows you to run your application program on specific cpu's and memory nodes.
It does this by supplying a NUMA memory policy to the operating system before running your program.
The libnuma library provides convenient ways for you to add NUMA memory policies into your own program."""
toolchain = {'name': 'dummy', 'version': ''}
toolchainopts = {'pic': True}
source_urls = ['https://github.com/numactl/numactl/archive/']
sources = [SOURCE_TAR_GZ]
#preconfigopts = "./autogen.sh && "
sanity_check_paths = {
'files': [
'bin/numactl',
'bin/numastat',
'lib/libnuma.%s' %
SHLIB_EXT,
'lib/libnuma.a'],
'dirs': [
'share/man',
'include']}
moduleclass = 'tools'