easyconfigs-it4i/s/SLEPc/SLEPc-3.13.3-intel-2020a.eb
Lukas Krupcik 60a06b0b40 modified: b/Boost/Boost-1.72.0-intel-2020a.eb
modified:   l/LAMMPS/LAMMPS-2Aug2023_update1-foss-2021b-kokkos.eb
	new file:   l/LAMMPS/LAMMPS-2Aug2023_update2-foss-2023a-kokkos-CUDA-12.1.1.eb
	new file:   l/LAMMPS/LAMMPS-2Aug2023_update2-foss-2023a-kokkos.eb
	modified:   m/METIS/METIS-5.1.0-intel-2020a.eb
	modified:   p/PETSc/PETSc-3.12.4-intel-2020a.eb
	modified:   s/SCOTCH/SCOTCH-6.0.9-intel-2020a.eb
	modified:   s/SLEPc/SLEPc-3.13.3-intel-2020a.eb
	new file:   y/Yambo/Yambo-5.2.3-intel-2020a-SLEPc.eb
2024-07-09 09:30:41 +02:00

25 lines
931 B
Plaintext

# IT4Innovations 2020
# LK
name = 'SLEPc'
version = '3.13.3'
homepage = 'https://www.grycap.upv.es/slepc/'
description = """SLEPc (Scalable Library for Eigenvalue Problem Computations) is a software library for the solution
of large scale sparse eigenvalue problems on parallel computers. It is an extension of PETSc and can be used for
either standard or generalized eigenproblems, with real or complex arithmetic. It can also be used for computing a
partial SVD of a large, sparse, rectangular matrix, and to solve quadratic eigenvalue problems."""
toolchain = {'name': 'intel', 'version': '2020a'}
toolchainopts = {'usempi': True, 'openmp': True}
source_urls = ['https://slepc.upv.es/download/distrib']
sources = [SOURCELOWER_TAR_GZ]
checksums = ['23d179c22b4b2f22d29fa0ac0a62f5355a964d3bc245a667e9332347c5aa8f81']
dependencies = [('PETSc', '3.12.4')]
petsc_arch = 'installed-arch-linux2-c-opt'
moduleclass = 'numlib'