easyconfigs-it4i/l/LAMMPS/LAMMPS-2Aug2023_update1-foss-2021b-kokkos.eb
Lukas Krupcik 60a06b0b40 modified: b/Boost/Boost-1.72.0-intel-2020a.eb
modified:   l/LAMMPS/LAMMPS-2Aug2023_update1-foss-2021b-kokkos.eb
	new file:   l/LAMMPS/LAMMPS-2Aug2023_update2-foss-2023a-kokkos-CUDA-12.1.1.eb
	new file:   l/LAMMPS/LAMMPS-2Aug2023_update2-foss-2023a-kokkos.eb
	modified:   m/METIS/METIS-5.1.0-intel-2020a.eb
	modified:   p/PETSc/PETSc-3.12.4-intel-2020a.eb
	modified:   s/SCOTCH/SCOTCH-6.0.9-intel-2020a.eb
	modified:   s/SLEPc/SLEPc-3.13.3-intel-2020a.eb
	new file:   y/Yambo/Yambo-5.2.3-intel-2020a-SLEPc.eb
2024-07-09 09:30:41 +02:00

170 lines
3.9 KiB
Plaintext

# IT4Innovations
# LK 2023
name = 'LAMMPS'
version = '2Aug2023_update1'
versionsuffix = '-kokkos'
homepage = 'https://www.lammps.org'
description = """LAMMPS is a classical molecular dynamics code, and an acronym
for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has
potentials for solid-state materials (metals, semiconductors) and soft matter
(biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be
used to model atoms or, more generically, as a parallel particle simulator at
the atomic, meso, or continuum scale. LAMMPS runs on single processors or in
parallel using message-passing techniques and a spatial-decomposition of the
simulation domain. The code is designed to be easy to modify or extend with new
functionality.
"""
toolchain = {'name': 'foss', 'version': '2021b'}
import os
if os.environ.get("CLUSTERNAME") in ["KAROLINA"]:
toolchainopts = {'openmp': True, 'usempi': True, 'optarch': 'march=core-avx2', 'pic': True}
else:
toolchainopts = {'openmp': True, 'usempi': True, 'pic': True}
# 'https://github.com/lammps/lammps/archive/'
source_urls = [GITHUB_LOWER_SOURCE]
sources = ['stable_%(version)s.tar.gz']
checksums = ['0e5568485e5ee080412dba44a1b7a93f864f1b5c75121f11d528854269953ed0']
builddependencies = [
('CMake', '3.22.1'),
('pkg-config', '0.29.2'),
('archspec', '0.1.3'),
]
dependencies = [
('Python', '3.9.6'),
('libpng', '1.6.37'),
('libjpeg-turbo', '2.0.6'),
('netCDF', '4.8.1'),
('GSL', '2.7'),
('zlib', '1.2.11'),
('gzip', '1.10'),
('cURL', '7.78.0'),
('HDF5', '1.12.1'),
('tbb', '2020.3'),
('PCRE', '8.45'),
('libxml2', '2.9.10'),
('FFmpeg', '4.3.2'),
('Voro++', '0.4.6'),
('kim-api', '2.3.0'),
('Eigen', '3.4.0'),
('PLUMED', '2.7.3'),
('ScaFaCoS', '1.0.1'),
('SciPy-bundle', '2021.10'),
# VTK package is auto-disabled if this dep is not available
('VTK', '9.1.0'),
]
# To use additional custom configuration options, use the 'configopts' easyconfig parameter
# See docs and lammps easyblock for more information.
# https://github.com/lammps/lammps/blob/master/cmake/README.md#lammps-configuration-options
# OpenMP-Kokkos build is default in the current easyblock. One can switch to serial backend of Kokkos,
# which is claimed to be faster in pure MPI calculations
# configopts = "-DKokkos_ENABLE_SERIAL=yes "
# packages auto-enabled by easyblock
# 'GPU' - if cuda package is present and kokkos is disabled
# 'KOKKOS' - if kokkos is enabled (by default)
# include the following extra packages into the build
general_packages = [
'ASPHERE',
'AMOEBA',
'ATC',
'AWPMD',
'BOCS',
'BODY',
'BPM',
'BROWNIAN',
'CG-DNA',
'CG-SDK',
'CLASS2',
'COLLOID',
'COLVARS',
'COMPRESS',
'CORESHELL',
'DIELECTRIC',
'DIFFRACTION',
'DIPOLE',
'DPD-BASIC',
'DPD-MESO',
'DPD-REACT',
'DPD-SMOOTH',
'DRUDE',
'EFF',
'ELECTRODE',
'EXTRA-COMPUTE',
'EXTRA-DUMP',
'EXTRA-FIX',
'EXTRA-MOLECULE',
'EXTRA-PAIR',
'FEP',
'GRANULAR',
'H5MD',
'INTERLAYER',
'KIM',
'KSPACE',
'LATBOLTZ',
'MANIFOLD',
'MACHDYN',
'MANYBODY',
'MC',
'MEAM',
'MGPT',
'MISC',
'ML-IAP',
'ML-PACE',
'ML-RANN',
'ML-SNAP',
'MOFFF',
'MOLECULE',
'MOLFILE',
'MPIIO',
'NETCDF',
'OPENMP',
'ORIENT',
'PERI',
'PHONON',
'PLUGIN',
'PLUMED',
'POEMS',
'PTM',
'PYTHON',
'QEQ',
'QTB',
'REACTION',
'REAXFF',
'REPLICA',
'RIGID',
'SCAFACOS',
'SHOCK',
'SMTBQ',
'SPH',
'SPIN',
'SRD',
'TALLY',
'UEF',
'VORONOI',
'VTK',
'YAFF',
]
# Excluded packages due to requiring additional (non-trivial) deps
# - ADIOS
# - LATTE
# - MESONT (requires very large files downloaded during build)
# - ML-HDNNP (requires N2P2)
# - ML-QUIP
# - MSCG
# - QMMM (setup seems complex)
moduleclass = 'chem'