# IT4Innovations 2022 # JK easyblock = 'Tarball' name = 'Cordax' version = '20220830' homepage = 'https://cordax.switchlab.org/' description = """CORDAX is an aggregation propensity predictor based on predicted packing energies.""" toolchain = {'name': 'foss', 'version': '2020b'} sources = ['%(namelower)s-%(version)s.tar.gz'] patches = ['Cordax-20220830-set-proper-paths.patch'] checksums = [ 'bc2b2e84f3df84c1ecabc774fed247998d1aeb38bade04127e47cd585130160d', # cordax-20220830.tar.gz 'df8261e08da5d4e698f8621284d22bab99a0064f27d7735933c0d15c9ed730ff', # Cordax-20220830-set-proper-paths.patch ] dependencies = [ ('Python', '2.7.18'), ('matplotlib', '2.2.5', '-Python-%(pyver)s'), ('SciPy-bundle', '2020.11', '-Python-%(pyver)s'), ('scikit-learn', '0.20.4', '-Python-%(pyver)s'), ('Biopython', '1.72', '-Python-%(pyver)s'), ('FoldX', '5.0', '', True), ] sanity_check_paths = { 'files': ['parser.py', 'precomputed_dg.py', 'predictor.py', 'propensity.py', 'run_foldx.py', 'standalone.py', 'utils.py'], 'dirs': ['dataset', 'foldx', 'test', 'DATADIR'], } modextrapaths = {'PATH': ''} modloadmsg = "Precalculated models are available at $EBROOTCORDAX/DATADIR" moduleclass = 'bio'