new file: a/ANSYS/ANSYS-22.2-intel-2020b.eb

new file:   f/FFTW/FFTW-3.3.10-gompi-2021b-amd.eb
	new file:   h/HyperQueue/HyperQueue-0.13.0.eb
	new file:   o/OVITO/OVITO-3.7.11-GCCcore-11.3.0-pro.eb
	new file:   t/Tensorflow/TensorFlow-2.10.0-fosscuda-2020b.eb
	new file:   v/VASP/VASP-6.3.2-foss-2021b.eb
	new file:   w/Wannier90/Wannier90-3.1.0-foss-2021b-serial.eb
	deleted:    v/VASP/VASP-6.3.1-foss-2022a.eb
This commit is contained in:
easybuild 2022-11-10 15:50:45 +01:00
parent f75be2e32e
commit 5c44c32106
7 changed files with 392 additions and 5 deletions

View File

@ -0,0 +1,28 @@
# IT4Innovations
# LK JK 2022
name = 'ANSYS'
version = '22.2'
homepage = 'http://www.ansys.com'
description = """ANSYS simulation software enables organizations to confidently predict
how their products will operate in the real world. We believe that every product is
a promise of something greater. """
toolchain = {'name': 'intel', 'version': '2020b'}
# create a zip file from the 3 install iso files.
# make sure all files of the iso's are in the same directory.
sources = ['ANSYS-22.2.tar.gz']
checksums = ['51bf1ef35347b00d61675911095c0d65c1571d8d30782c14e320ec545e9cf0a7']
dependencies = [
('libGLU', '9.0.1'),
('libnsl', '1.3.0'),
]
import os
license_server = os.getenv('EB_ANSYS_LICENSE_SERVER', '10.5.8.13')
license_server_port = os.getenv('EB_ANSYS_LICENSE_SERVER_PORT', '2325:1055')
moduleclass = 'tools'

View File

@ -0,0 +1,26 @@
name = 'FFTW'
version = '3.3.10'
local_amd_fftw_ver = '3.2'
versionsuffix = '-amd'
homepage = 'https://developer.amd.com/amd-aocl/fftw/'
description = """FFTW is a C subroutine library for computing the discrete Fourier transform (DFT)
in one or more dimensions, of arbitrary input size, and of both real and complex data.
AMD FFTW includes selective kernels and routines optimized for the AMD EPYC™ processor family."""
toolchain = {'name': 'gompi', 'version': '2021b'}
toolchainopts = {'pic': True}
source_urls = ['https://github.com/amd/amd-fftw/archive/']
sources = [{
'download_filename': '%s.tar.gz' % local_amd_fftw_ver,
'filename': 'amd-fftw-%s.tar.gz' % local_amd_fftw_ver,
}]
checksums = ['31cab17a93e03b5b606e88dd6116a1055b8f49542d7d0890dbfcca057087b8d0']
configopts = '--enable-amd-opt'
# asi selzou, kdyztak zakomentovat
runtest = 'check'
moduleclass = 'numlib'

View File

@ -0,0 +1,27 @@
# IT4Innovations 2022
# JK
easyblock = 'PackedBinary'
name = 'HyperQueue'
version = '0.13.0'
homepage = 'https://it4innovations.github.io/hyperqueue/'
description = """HyperQueue lets you build a computation plan consisting of a large amount of tasks
and then execute it transparently over a system like SLURM/PBS. It dynamically groups jobs into SLURM/PBS jobs
and distributes them to fully utilize allocated notes.
You thus do not have to manually aggregate your tasks into SLURM/PBS jobs."""
toolchain = SYSTEM
source_urls = ['https://github.com/It4innovations/hyperqueue/releases/download/v%(version)s/']
sources = ['hq-v%(version)s-linux-x64.tar.gz']
checksums = ['4c3dac11cc01ef2a0c222099e484fd1b23ac52d8db234855ec1f0685543b4e0d']
sanity_check_paths = {
'files': ['hq'],
'dirs': [],
}
moduleclass = 'devel'

View File

@ -0,0 +1,31 @@
# IT4Innovations 2022
# JK LK
easyblock = 'Tarball'
name = 'OVITO'
version = '3.7.11'
versionsuffix = '-pro'
homepage = 'https://www.ovito.org/'
description = """OVITO is a scientific visualization and analysis software for atomistic and particle simulation data."""
toolchain = {'name': 'GCCcore', 'version': '11.3.0'}
sources = ['ovito-pro-%(version)s-x86_64.tar.xz']
checksums = ['b8b807fbe7832c8bcce9a70d81cdce8d4840090491211eeb4a28f25e944d9280']
dependencies = [
('Qt5', '5.15.5'),
]
sanity_check_paths = {
'files': ['bin/ovito'],
'dirs': [],
}
modextravars = {
'OVITO_LICENSING_VERBOSE': '1',
}
moduleclass = 'vis'

View File

@ -0,0 +1,233 @@
easyblock = 'PythonBundle'
name = 'TensorFlow'
version = '2.10.0'
homepage = 'https://www.tensorflow.org/'
description = "An open-source software library for Machine Intelligence"
toolchain = {'name': 'fosscuda', 'version': '2020b'}
toolchainopts = {'pic': True}
builddependencies = [
('Bazel', '3.7.2'),
('protobuf', '3.14.0'),
# git 2.x required, see also https://github.com/tensorflow/tensorflow/issues/29053
('git', '2.28.0', '-nodocs'),
('pybind11', '2.6.0'),
('pkgconfig', '1.5.1', '-python'), # For h5py
('UnZip', '6.0'),
]
dependencies = [
('cuDNN', '8.0.4.30', '-CUDA-%(cudaver)s', True),
('NCCL', '2.8.3', '-CUDA-%(cudaver)s'),
('Python', '3.8.6'),
('h5py', '3.1.0'),
('cURL', '7.72.0'),
('double-conversion', '3.1.5'),
('flatbuffers', '1.12.0'),
('giflib', '5.2.1'),
('hwloc', '2.2.0'),
('ICU', '67.1'),
('JsonCpp', '1.9.4'),
('libjpeg-turbo', '2.0.5'),
('LMDB', '0.9.24'),
('NASM', '2.15.05'),
('nsync', '1.24.0'),
('SQLite', '3.33.0'),
('PCRE', '8.44'),
('protobuf-python', '3.14.0'),
('flatbuffers-python', '1.12'),
('typing-extensions', '3.7.4.3'),
('libpng', '1.6.37'),
('snappy', '1.1.8'),
('zlib', '1.2.11'),
]
use_pip = True
sanity_pip_check = True
# Dependencies created and updated using findPythonDeps.sh:
# https://gist.github.com/Flamefire/49426e502cd8983757bd01a08a10ae0d
exts_list = [
('Markdown', '3.3.4', {
'checksums': ['31b5b491868dcc87d6c24b7e3d19a0d730d59d3e46f4eea6430a321bed387a49'],
}),
('pyasn1-modules', '0.2.8', {
'checksums': ['905f84c712230b2c592c19470d3ca8d552de726050d1d1716282a1f6146be65e'],
}),
('rsa', '4.7.2', {
'checksums': ['9d689e6ca1b3038bc82bf8d23e944b6b6037bc02301a574935b2dd946e0353b9'],
}),
('cachetools', '4.2.2', {
'checksums': ['61b5ed1e22a0924aed1d23b478f37e8d52549ff8a961de2909c69bf950020cff'],
}),
('google-auth', '1.30.0', {
'modulename': 'google.auth',
'checksums': ['9ad25fba07f46a628ad4d0ca09f38dcb262830df2ac95b217f9b0129c9e42206'],
}),
('oauthlib', '3.1.0', {
'checksums': ['bee41cc35fcca6e988463cacc3bcb8a96224f470ca547e697b604cc697b2f889'],
}),
('requests-oauthlib', '1.3.0', {
'checksums': ['b4261601a71fd721a8bd6d7aa1cc1d6a8a93b4a9f5e96626f8e4d91e8beeaa6a'],
}),
('google-auth-oauthlib', '0.4.4', {
'checksums': ['09832c6e75032f93818edf1affe4746121d640c625a5bef9b5c96af676e98eee'],
}),
('Werkzeug', '2.0.0', {
'checksums': ['3389bbfe6d40c6dd25e6d3f974155163c8b3de5bbda6a89342d4ab93fae80ba0'],
}),
('absl-py', '0.12.0', {
'modulename': 'absl',
'checksums': ['b44f68984a5ceb2607d135a615999b93924c771238a63920d17d3387b0d229d5'],
}),
('astunparse', '1.6.3', {
'checksums': ['5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872'],
}),
('grpcio', '1.34.1', {
'modulename': 'grpc',
'checksums': ['1c746a3cd8a830d8d916a9d0476a786aaa98c5cc2a096344af2be955e439f8ac'],
'preinstallopts': "export GRPC_PYTHON_BUILD_EXT_COMPILER_JOBS=%(parallel)s && ",
}),
('gviz-api', '1.9.0', {
'source_tmpl': 'gviz_api-%(version)s.tar.gz',
'checksums': ['43d13ccc21834d0501b33a291ef3265e933dbb4bbdca3d34b1ed0a048c0ef640'],
}),
('tensorboard_data_server', '0.6.1', {
'source_tmpl': SOURCE_PY3_WHL, # Requires Rust to build, take the dummy for now
'checksums': ['809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7'],
}),
('tensorboard', version, {
'source_tmpl': SOURCE_PY3_WHL,
'checksums': ['e167460085b6528956b33bab1c970c989cdce47a6616273880733f5e7bde452e'],
}),
('tensorboard_plugin_wit', '1.8.0', {
'source_tmpl': SOURCE_PY3_WHL,
'checksums': ['2a80d1c551d741e99b2f197bb915d8a133e24adb8da1732b840041860f91183a'],
}),
('tensorboard_plugin_profile', '2.4.0', {
'checksums': ['dfbf254ee960440e3b2518324f876a6d6704c60b936887d99214fa36988a206a'],
}),
('google-pasta', '0.2.0', {
'modulename': 'pasta',
'checksums': ['c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e'],
}),
('termcolor', '1.1.0', {
'checksums': ['1d6d69ce66211143803fbc56652b41d73b4a400a2891d7bf7a1cdf4c02de613b'],
}),
('tensorflow_estimator', version, {
'source_tmpl': SOURCE_WHL,
'checksums': ['d1fe76dee8b1dcab865d807a0246da0a9c4a635b1eba6e9545bf216c3aad6955'],
}),
('astor', '0.8.1', {
'checksums': ['6a6effda93f4e1ce9f618779b2dd1d9d84f1e32812c23a29b3fff6fd7f63fa5e'],
}),
('gast', '0.4.0', {
'checksums': ['40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1'],
}),
('opt_einsum', '3.3.0', {
'checksums': ['59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549'],
}),
('wrapt', '1.12.1', {
'checksums': ['b62ffa81fb85f4332a4f609cab4ac40709470da05643a082ec1eb88e6d9b97d7'],
}),
('Keras_Preprocessing', '1.1.2', {
'checksums': ['add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3'],
}),
('dill', '0.3.4', {
'source_tmpl': '%(name)s-%(version)s.zip',
'checksums': ['9f9734205146b2b353ab3fec9af0070237b6ddae78452af83d2fca84d739e675'],
}),
('tblib', '1.7.0', {
'checksums': ['059bd77306ea7b419d4f76016aef6d7027cc8a0785579b5aad198803435f882c'],
}),
('portpicker', '1.3.1', {
'checksums': ['d2cdc776873635ed421315c4d22e63280042456bbfa07397817e687b142b9667'],
}),
('keras_nightly', '2.5.0.dev2021032900', {
'modulename': 'keras',
'source_tmpl': SOURCE_WHL,
'checksums': ['6ba70f738f4008222de7e7fdd5b2b18c48c49b897a9fca54c844854e25964011'],
}),
(name, version, {
'source_tmpl': 'v%(version)s.tar.gz',
'source_urls': ['https://github.com/tensorflow/tensorflow/archive/'],
'patches': [
'TensorFlow-2.1.0_fix-cuda-build.patch',
'TensorFlow-2.4.0_add-ldl.patch',
'TensorFlow-2.4.0_dont-use-var-lock.patch',
'TensorFlow-2.4.1_fix-min-priority-test.patch',
'TensorFlow-2.5.0_add-default-shell-env.patch',
'TensorFlow-2.5.0_add-protobuf-deps.patch',
'TensorFlow-2.5.0_add-support-for-large-core-systems.patch',
'TensorFlow-2.5.0_disable-avx512-extensions.patch',
'TensorFlow-2.5.0-fix-alias-violation-in-absl.patch',
'TensorFlow-2.5.0_fix-alignment-in-matmul-test.patch',
'TensorFlow-2.5.0_fix-arm-vector-intrinsics.patch',
'TensorFlow-2.5.0_fix-crash-on-shutdown.patch',
'TensorFlow-2.5.0_remove-duplicate-gpu-tests.patch',
],
'checksums': [
'233875ea27fc357f6b714b2a0de5f6ff124b50c1ee9b3b41f9e726e9e677b86c', # v2.5.0.tar.gz
'78c20aeaa7784b8ceb46238a81e8c2461137d28e0b576deeba8357d23fbe1f5a', # TensorFlow-2.1.0_fix-cuda-build.patch
'917ee7282e782e48673596d8917c3207e60e0851bb9acf230a2a439b067af2e3', # TensorFlow-2.4.0_add-ldl.patch
# TensorFlow-2.4.0_dont-use-var-lock.patch
'b14f2493fd2edf79abd1c4f2dde6c98a3e7d5cb9c25ab9386df874d5f072d6b5',
# TensorFlow-2.4.1_fix-min-priority-test.patch
'389febce9a0612fd457daf4cb18c02f77fc7311bacae0963602a3198d9f2737f',
# TensorFlow-2.5.0_add-default-shell-env.patch
'09b0c5d4ff04f56a9657875471ed78001d4201cac795aeff62019d582115b468',
# TensorFlow-2.5.0_add-protobuf-deps.patch
'2aa79b89cff13e81f83e385761917d5d6dbdffd6b0366d90580761b958f14363',
# TensorFlow-2.5.0_add-support-for-large-core-systems.patch
'915f3477d6407fafd48269fe1e684a05ce361d9b9b85e58686682df87760f636',
# TensorFlow-2.5.0_disable-avx512-extensions.patch
'3655ce24c97569ac9738c07cac85347ba6f5c815ada95b19b606ffa46d4dda03',
# TensorFlow-2.5.0-fix-alias-violation-in-absl.patch
'12454fda3330fb45cd380377e283f04488b40e0b8ae7378e786ddf731a581f75',
# TensorFlow-2.5.0_fix-alignment-in-matmul-test.patch
'6a4d6cbf45a622b8a2c3ea0b1c0171f01f595684d9c57d415bb39b1b27e1180f',
# TensorFlow-2.5.0_fix-arm-vector-intrinsics.patch
'6abfadc0f67ff3b510d70430843201cb46d7bd65db045ec9b482af70e0c8c0c8',
# TensorFlow-2.5.0_fix-crash-on-shutdown.patch
'578c7493221ebd3dc25ca43d63a72cbb28fdf4112b1e2baa7390f25781bd78fd',
# TensorFlow-2.5.0_remove-duplicate-gpu-tests.patch
'b940d438e036faac24453bff2cf1834c5e1359e87e84d1f1999fa7a30b278fec',
],
'test_script': 'TensorFlow-2.x_mnist-test.py',
'test_tag_filters_cpu': '-gpu,-tpu,-no_cuda_on_cpu_tap,-no_pip,-no_oss,-oss_serial,-benchmark-test,-v1only',
'test_tag_filters_gpu': ('gpu,-no_gpu,-nogpu,-gpu_cupti,-no_cuda11,-no_pip,-no_oss,-oss_serial,'
'-benchmark-test,-v1only'),
'test_targets': [
'//tensorflow/core/...',
'-//tensorflow/core:example_java_proto',
'-//tensorflow/core/example:example_protos_closure',
'//tensorflow/cc/...',
'//tensorflow/c/...',
'//tensorflow/python/...',
# Fails on some nodes but C API isn't installed anyway
'-//tensorflow/c/eager:c_api_test_gpu',
'-//tensorflow/c/eager:c_api_distributed_test',
'-//tensorflow/c/eager:c_api_distributed_test_gpu',
# Race condition with port picker: https://github.com/tensorflow/tensorflow/issues/46602
'-//tensorflow/c/eager:c_api_cluster_test_gpu',
'-//tensorflow/c/eager:c_api_remote_function_test_gpu',
'-//tensorflow/c/eager:c_api_remote_test_gpu',
# Fails to open its own test.xml(?)
'-//tensorflow/core/common_runtime:collective_param_resolver_local_test',
# Fails on non-AVX-512 systems: https://github.com/tensorflow/tensorflow/issues/46532
'-//tensorflow/core/common_runtime:mkl_layout_pass_test',
'-//tensorflow/core/kernels/mkl:mkl_fused_ops_test',
# Fails on AMD EPYC systems: https://github.com/tensorflow/tensorflow/issues/52151
'-//tensorflow/core/kernels/mkl:mkl_fused_batch_norm_op_test',
],
'testopts': "--test_timeout=3600 --test_size_filters=small",
'testopts_gpu': "--test_timeout=3600 --test_size_filters=small " +
"--run_under=//tensorflow/tools/ci_build/gpu_build:parallel_gpu_execute",
'with_xla': True,
}),
]
cuda_compute_capabilities = ['8.0']
moduleclass = 'lib'

View File

@ -4,7 +4,7 @@
easyblock = 'MakeCp'
name = 'VASP'
version = '6.3.1'
version = '6.3.2'
homepage = 'http://www.vasp.at'
description = """The Vienna Ab initio Simulation Package (VASP) is a local computer program for atomic scale
@ -15,19 +15,20 @@ To use VASP, you need an academic license from University of Vienna. Follow the
Please send us a list of authorized users and their IDs for which you need access (use only http://support.it4i.cz/rt). We are responsible for verifying your licenses."""
toolchain = {'name': 'foss', 'version': '2022a'}
toolchain = {'name': 'foss', 'version': '2021b'}
toolchainopts = {'pic': True, 'usempi': True}
# Vasp is proprietary software, see http://www.vasp.at/index.php/faqs on
# how to get access to the code
sources = ['%(namelower)s.%(version)s.tgz']
checksums = ['113db53c4346287c89982f52887a65d12d246e38de7ccd024e44499c4774dc66']
checksums = ['f7595221b0f9236a324ea8afe170637a578cdd5a837cc7679e7f7812f6edf25a']
# use serial compilation of W90, see https://www.vasp.at/wiki/index.php/Makefile.include#Wannier90_.28optional.29
# Important: In case of Wannier90 3.x, you should compile a serial version by removing COMMS=mpi in the make.inc of Wannier90.
dependencies = [
('HDF5', '1.13.1'),
('HDF5', '1.12.1'),
('Wannier90', '3.1.0', '-serial'),
('FFTW', '3.3.10', '-amd'),
]
prebuildopts = 'cp arch/makefile.include.gnu ./makefile.include && '
@ -38,7 +39,7 @@ prebuildopts += 'sed -i "s|\(OFLAG\s\+=\) -O2|\\1 -O3 -march=native|" makefile.i
# FFLAGS, SCALAPACK and FFTW
prebuildopts += 'sed -i "s|\(FFLAGS\s\+=\) -w -ffpe-summary=none|\\1 -FR -ffpe-summary=none|" makefile.include && '
prebuildopts += 'sed -i "s|\(SCALAPACK_ROOT\s\+?=\) /path/to/your/scalapack/installation|\\1 ${EBROOTSCALAPACK}|" makefile.include && '
prebuildopts += 'sed -i "s|\(FFTW_ROOT\s\+?=\) /path/to/your/fftw/installation|\\1 ${EBROOTFFTWMPI}|" makefile.include && '
prebuildopts += 'sed -i "s|\(FFTW_ROOT\s\+?=\) /path/to/your/fftw/installation|\\1 ${EBROOTFFTW}|" makefile.include && '
# FLexiBLAS shadows OpenBLAS, for more info see FlexiBLAS description
prebuildopts += 'sed -i "s|\(OPENBLAS_ROOT\s\+?=\) /path/to/your/openblas/installation|\\1 ${EBROOTFLEXIBLAS}|" makefile.include && '

View File

@ -0,0 +1,41 @@
# IT4Innovations 2022
# JK
easyblock = 'MakeCp'
name = 'Wannier90'
version = '3.1.0'
versionsuffix = '-serial'
homepage = 'http://www.wannier.org'
description = """A tool for obtaining maximally-localised Wannier functions"""
toolchain = {'name': 'foss', 'version': '2021b'}
toolchainopts = {'usempi': True}
github_account = 'wannier-developers'
source_urls = [GITHUB_LOWER_SOURCE]
sources = [{'download_filename': 'v%(version)s.tar.gz', 'filename': SOURCELOWER_TAR_GZ}]
patches = ['Wannier90_3x_ignore_makeinc.patch']
checksums = [
'40651a9832eb93dec20a8360dd535262c261c34e13c41b6755fa6915c936b254', # wannier90-3.1.0.tar.gz
'561c0d296e0e30b8bb303702cd6e41ded54c153d9b9e6cd9cab73858e5e2945e', # Wannier90_3x_ignore_makeinc.patch
]
dependencies = [('FFTW', '3.3.10', '-amd')]
buildopts = 'all F90=$F90 MPIF90=$MPIF90 FCOPTS="$FFLAGS" LDOPTS="$FFLAGS" '
buildopts += 'LIBDIR="$LAPACK_LIB_DIR" LIBS="$LIBLAPACK" '
# compile serial version for use with VASP per
# https://www.vasp.at/wiki/index.php/Makefile.include#Wannier90_.28optional.29
#buildopts += 'COMMS=mpi'
files_to_copy = [(['wannier90.x', 'postw90.x'], 'bin'), (['libwannier.a'], 'lib')]
sanity_check_paths = {
'files': ['bin/wannier90.x', 'bin/postw90.x', 'lib/libwannier.a'],
'dirs': []
}
moduleclass = 'chem'