mirror of
https://code.it4i.cz/sccs/easyconfigs-it4i.git
synced 2025-04-07 15:32:11 +01:00
new file: a/ANSYS/ANSYS-22.2-intel-2020b.eb
new file: f/FFTW/FFTW-3.3.10-gompi-2021b-amd.eb new file: h/HyperQueue/HyperQueue-0.13.0.eb new file: o/OVITO/OVITO-3.7.11-GCCcore-11.3.0-pro.eb new file: t/Tensorflow/TensorFlow-2.10.0-fosscuda-2020b.eb new file: v/VASP/VASP-6.3.2-foss-2021b.eb new file: w/Wannier90/Wannier90-3.1.0-foss-2021b-serial.eb deleted: v/VASP/VASP-6.3.1-foss-2022a.eb
This commit is contained in:
parent
f75be2e32e
commit
5c44c32106
28
a/ANSYS/ANSYS-22.2-intel-2020b.eb
Normal file
28
a/ANSYS/ANSYS-22.2-intel-2020b.eb
Normal file
@ -0,0 +1,28 @@
|
||||
# IT4Innovations
|
||||
# LK JK 2022
|
||||
|
||||
name = 'ANSYS'
|
||||
version = '22.2'
|
||||
|
||||
homepage = 'http://www.ansys.com'
|
||||
description = """ANSYS simulation software enables organizations to confidently predict
|
||||
how their products will operate in the real world. We believe that every product is
|
||||
a promise of something greater. """
|
||||
|
||||
toolchain = {'name': 'intel', 'version': '2020b'}
|
||||
|
||||
# create a zip file from the 3 install iso files.
|
||||
# make sure all files of the iso's are in the same directory.
|
||||
sources = ['ANSYS-22.2.tar.gz']
|
||||
checksums = ['51bf1ef35347b00d61675911095c0d65c1571d8d30782c14e320ec545e9cf0a7']
|
||||
|
||||
dependencies = [
|
||||
('libGLU', '9.0.1'),
|
||||
('libnsl', '1.3.0'),
|
||||
]
|
||||
|
||||
import os
|
||||
license_server = os.getenv('EB_ANSYS_LICENSE_SERVER', '10.5.8.13')
|
||||
license_server_port = os.getenv('EB_ANSYS_LICENSE_SERVER_PORT', '2325:1055')
|
||||
|
||||
moduleclass = 'tools'
|
26
f/FFTW/FFTW-3.3.10-gompi-2021b-amd.eb
Normal file
26
f/FFTW/FFTW-3.3.10-gompi-2021b-amd.eb
Normal file
@ -0,0 +1,26 @@
|
||||
name = 'FFTW'
|
||||
version = '3.3.10'
|
||||
local_amd_fftw_ver = '3.2'
|
||||
versionsuffix = '-amd'
|
||||
|
||||
homepage = 'https://developer.amd.com/amd-aocl/fftw/'
|
||||
description = """FFTW is a C subroutine library for computing the discrete Fourier transform (DFT)
|
||||
in one or more dimensions, of arbitrary input size, and of both real and complex data.
|
||||
AMD FFTW includes selective kernels and routines optimized for the AMD EPYC™ processor family."""
|
||||
|
||||
toolchain = {'name': 'gompi', 'version': '2021b'}
|
||||
toolchainopts = {'pic': True}
|
||||
|
||||
source_urls = ['https://github.com/amd/amd-fftw/archive/']
|
||||
sources = [{
|
||||
'download_filename': '%s.tar.gz' % local_amd_fftw_ver,
|
||||
'filename': 'amd-fftw-%s.tar.gz' % local_amd_fftw_ver,
|
||||
}]
|
||||
checksums = ['31cab17a93e03b5b606e88dd6116a1055b8f49542d7d0890dbfcca057087b8d0']
|
||||
|
||||
configopts = '--enable-amd-opt'
|
||||
|
||||
# asi selzou, kdyztak zakomentovat
|
||||
runtest = 'check'
|
||||
|
||||
moduleclass = 'numlib'
|
27
h/HyperQueue/HyperQueue-0.13.0.eb
Normal file
27
h/HyperQueue/HyperQueue-0.13.0.eb
Normal file
@ -0,0 +1,27 @@
|
||||
# IT4Innovations 2022
|
||||
# JK
|
||||
|
||||
easyblock = 'PackedBinary'
|
||||
|
||||
name = 'HyperQueue'
|
||||
version = '0.13.0'
|
||||
|
||||
homepage = 'https://it4innovations.github.io/hyperqueue/'
|
||||
description = """HyperQueue lets you build a computation plan consisting of a large amount of tasks
|
||||
and then execute it transparently over a system like SLURM/PBS. It dynamically groups jobs into SLURM/PBS jobs
|
||||
and distributes them to fully utilize allocated notes.
|
||||
You thus do not have to manually aggregate your tasks into SLURM/PBS jobs."""
|
||||
|
||||
toolchain = SYSTEM
|
||||
|
||||
source_urls = ['https://github.com/It4innovations/hyperqueue/releases/download/v%(version)s/']
|
||||
sources = ['hq-v%(version)s-linux-x64.tar.gz']
|
||||
checksums = ['4c3dac11cc01ef2a0c222099e484fd1b23ac52d8db234855ec1f0685543b4e0d']
|
||||
|
||||
sanity_check_paths = {
|
||||
'files': ['hq'],
|
||||
'dirs': [],
|
||||
}
|
||||
|
||||
|
||||
moduleclass = 'devel'
|
31
o/OVITO/OVITO-3.7.11-GCCcore-11.3.0-pro.eb
Normal file
31
o/OVITO/OVITO-3.7.11-GCCcore-11.3.0-pro.eb
Normal file
@ -0,0 +1,31 @@
|
||||
# IT4Innovations 2022
|
||||
# JK LK
|
||||
|
||||
easyblock = 'Tarball'
|
||||
|
||||
name = 'OVITO'
|
||||
version = '3.7.11'
|
||||
versionsuffix = '-pro'
|
||||
|
||||
homepage = 'https://www.ovito.org/'
|
||||
description = """OVITO is a scientific visualization and analysis software for atomistic and particle simulation data."""
|
||||
|
||||
toolchain = {'name': 'GCCcore', 'version': '11.3.0'}
|
||||
|
||||
sources = ['ovito-pro-%(version)s-x86_64.tar.xz']
|
||||
checksums = ['b8b807fbe7832c8bcce9a70d81cdce8d4840090491211eeb4a28f25e944d9280']
|
||||
|
||||
dependencies = [
|
||||
('Qt5', '5.15.5'),
|
||||
]
|
||||
|
||||
sanity_check_paths = {
|
||||
'files': ['bin/ovito'],
|
||||
'dirs': [],
|
||||
}
|
||||
|
||||
modextravars = {
|
||||
'OVITO_LICENSING_VERBOSE': '1',
|
||||
}
|
||||
|
||||
moduleclass = 'vis'
|
233
t/Tensorflow/TensorFlow-2.10.0-fosscuda-2020b.eb
Normal file
233
t/Tensorflow/TensorFlow-2.10.0-fosscuda-2020b.eb
Normal file
@ -0,0 +1,233 @@
|
||||
easyblock = 'PythonBundle'
|
||||
|
||||
name = 'TensorFlow'
|
||||
version = '2.10.0'
|
||||
|
||||
homepage = 'https://www.tensorflow.org/'
|
||||
description = "An open-source software library for Machine Intelligence"
|
||||
|
||||
toolchain = {'name': 'fosscuda', 'version': '2020b'}
|
||||
toolchainopts = {'pic': True}
|
||||
|
||||
builddependencies = [
|
||||
('Bazel', '3.7.2'),
|
||||
('protobuf', '3.14.0'),
|
||||
# git 2.x required, see also https://github.com/tensorflow/tensorflow/issues/29053
|
||||
('git', '2.28.0', '-nodocs'),
|
||||
('pybind11', '2.6.0'),
|
||||
('pkgconfig', '1.5.1', '-python'), # For h5py
|
||||
('UnZip', '6.0'),
|
||||
]
|
||||
dependencies = [
|
||||
('cuDNN', '8.0.4.30', '-CUDA-%(cudaver)s', True),
|
||||
('NCCL', '2.8.3', '-CUDA-%(cudaver)s'),
|
||||
('Python', '3.8.6'),
|
||||
('h5py', '3.1.0'),
|
||||
('cURL', '7.72.0'),
|
||||
('double-conversion', '3.1.5'),
|
||||
('flatbuffers', '1.12.0'),
|
||||
('giflib', '5.2.1'),
|
||||
('hwloc', '2.2.0'),
|
||||
('ICU', '67.1'),
|
||||
('JsonCpp', '1.9.4'),
|
||||
('libjpeg-turbo', '2.0.5'),
|
||||
('LMDB', '0.9.24'),
|
||||
('NASM', '2.15.05'),
|
||||
('nsync', '1.24.0'),
|
||||
('SQLite', '3.33.0'),
|
||||
('PCRE', '8.44'),
|
||||
('protobuf-python', '3.14.0'),
|
||||
('flatbuffers-python', '1.12'),
|
||||
('typing-extensions', '3.7.4.3'),
|
||||
('libpng', '1.6.37'),
|
||||
('snappy', '1.1.8'),
|
||||
('zlib', '1.2.11'),
|
||||
]
|
||||
|
||||
use_pip = True
|
||||
sanity_pip_check = True
|
||||
# Dependencies created and updated using findPythonDeps.sh:
|
||||
# https://gist.github.com/Flamefire/49426e502cd8983757bd01a08a10ae0d
|
||||
exts_list = [
|
||||
('Markdown', '3.3.4', {
|
||||
'checksums': ['31b5b491868dcc87d6c24b7e3d19a0d730d59d3e46f4eea6430a321bed387a49'],
|
||||
}),
|
||||
('pyasn1-modules', '0.2.8', {
|
||||
'checksums': ['905f84c712230b2c592c19470d3ca8d552de726050d1d1716282a1f6146be65e'],
|
||||
}),
|
||||
('rsa', '4.7.2', {
|
||||
'checksums': ['9d689e6ca1b3038bc82bf8d23e944b6b6037bc02301a574935b2dd946e0353b9'],
|
||||
}),
|
||||
('cachetools', '4.2.2', {
|
||||
'checksums': ['61b5ed1e22a0924aed1d23b478f37e8d52549ff8a961de2909c69bf950020cff'],
|
||||
}),
|
||||
('google-auth', '1.30.0', {
|
||||
'modulename': 'google.auth',
|
||||
'checksums': ['9ad25fba07f46a628ad4d0ca09f38dcb262830df2ac95b217f9b0129c9e42206'],
|
||||
}),
|
||||
('oauthlib', '3.1.0', {
|
||||
'checksums': ['bee41cc35fcca6e988463cacc3bcb8a96224f470ca547e697b604cc697b2f889'],
|
||||
}),
|
||||
('requests-oauthlib', '1.3.0', {
|
||||
'checksums': ['b4261601a71fd721a8bd6d7aa1cc1d6a8a93b4a9f5e96626f8e4d91e8beeaa6a'],
|
||||
}),
|
||||
('google-auth-oauthlib', '0.4.4', {
|
||||
'checksums': ['09832c6e75032f93818edf1affe4746121d640c625a5bef9b5c96af676e98eee'],
|
||||
}),
|
||||
('Werkzeug', '2.0.0', {
|
||||
'checksums': ['3389bbfe6d40c6dd25e6d3f974155163c8b3de5bbda6a89342d4ab93fae80ba0'],
|
||||
}),
|
||||
('absl-py', '0.12.0', {
|
||||
'modulename': 'absl',
|
||||
'checksums': ['b44f68984a5ceb2607d135a615999b93924c771238a63920d17d3387b0d229d5'],
|
||||
}),
|
||||
('astunparse', '1.6.3', {
|
||||
'checksums': ['5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872'],
|
||||
}),
|
||||
('grpcio', '1.34.1', {
|
||||
'modulename': 'grpc',
|
||||
'checksums': ['1c746a3cd8a830d8d916a9d0476a786aaa98c5cc2a096344af2be955e439f8ac'],
|
||||
'preinstallopts': "export GRPC_PYTHON_BUILD_EXT_COMPILER_JOBS=%(parallel)s && ",
|
||||
}),
|
||||
('gviz-api', '1.9.0', {
|
||||
'source_tmpl': 'gviz_api-%(version)s.tar.gz',
|
||||
'checksums': ['43d13ccc21834d0501b33a291ef3265e933dbb4bbdca3d34b1ed0a048c0ef640'],
|
||||
}),
|
||||
('tensorboard_data_server', '0.6.1', {
|
||||
'source_tmpl': SOURCE_PY3_WHL, # Requires Rust to build, take the dummy for now
|
||||
'checksums': ['809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7'],
|
||||
}),
|
||||
('tensorboard', version, {
|
||||
'source_tmpl': SOURCE_PY3_WHL,
|
||||
'checksums': ['e167460085b6528956b33bab1c970c989cdce47a6616273880733f5e7bde452e'],
|
||||
}),
|
||||
('tensorboard_plugin_wit', '1.8.0', {
|
||||
'source_tmpl': SOURCE_PY3_WHL,
|
||||
'checksums': ['2a80d1c551d741e99b2f197bb915d8a133e24adb8da1732b840041860f91183a'],
|
||||
}),
|
||||
('tensorboard_plugin_profile', '2.4.0', {
|
||||
'checksums': ['dfbf254ee960440e3b2518324f876a6d6704c60b936887d99214fa36988a206a'],
|
||||
}),
|
||||
('google-pasta', '0.2.0', {
|
||||
'modulename': 'pasta',
|
||||
'checksums': ['c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e'],
|
||||
}),
|
||||
('termcolor', '1.1.0', {
|
||||
'checksums': ['1d6d69ce66211143803fbc56652b41d73b4a400a2891d7bf7a1cdf4c02de613b'],
|
||||
}),
|
||||
('tensorflow_estimator', version, {
|
||||
'source_tmpl': SOURCE_WHL,
|
||||
'checksums': ['d1fe76dee8b1dcab865d807a0246da0a9c4a635b1eba6e9545bf216c3aad6955'],
|
||||
}),
|
||||
('astor', '0.8.1', {
|
||||
'checksums': ['6a6effda93f4e1ce9f618779b2dd1d9d84f1e32812c23a29b3fff6fd7f63fa5e'],
|
||||
}),
|
||||
('gast', '0.4.0', {
|
||||
'checksums': ['40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1'],
|
||||
}),
|
||||
('opt_einsum', '3.3.0', {
|
||||
'checksums': ['59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549'],
|
||||
}),
|
||||
('wrapt', '1.12.1', {
|
||||
'checksums': ['b62ffa81fb85f4332a4f609cab4ac40709470da05643a082ec1eb88e6d9b97d7'],
|
||||
}),
|
||||
('Keras_Preprocessing', '1.1.2', {
|
||||
'checksums': ['add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3'],
|
||||
}),
|
||||
('dill', '0.3.4', {
|
||||
'source_tmpl': '%(name)s-%(version)s.zip',
|
||||
'checksums': ['9f9734205146b2b353ab3fec9af0070237b6ddae78452af83d2fca84d739e675'],
|
||||
}),
|
||||
('tblib', '1.7.0', {
|
||||
'checksums': ['059bd77306ea7b419d4f76016aef6d7027cc8a0785579b5aad198803435f882c'],
|
||||
}),
|
||||
('portpicker', '1.3.1', {
|
||||
'checksums': ['d2cdc776873635ed421315c4d22e63280042456bbfa07397817e687b142b9667'],
|
||||
}),
|
||||
('keras_nightly', '2.5.0.dev2021032900', {
|
||||
'modulename': 'keras',
|
||||
'source_tmpl': SOURCE_WHL,
|
||||
'checksums': ['6ba70f738f4008222de7e7fdd5b2b18c48c49b897a9fca54c844854e25964011'],
|
||||
}),
|
||||
(name, version, {
|
||||
'source_tmpl': 'v%(version)s.tar.gz',
|
||||
'source_urls': ['https://github.com/tensorflow/tensorflow/archive/'],
|
||||
'patches': [
|
||||
'TensorFlow-2.1.0_fix-cuda-build.patch',
|
||||
'TensorFlow-2.4.0_add-ldl.patch',
|
||||
'TensorFlow-2.4.0_dont-use-var-lock.patch',
|
||||
'TensorFlow-2.4.1_fix-min-priority-test.patch',
|
||||
'TensorFlow-2.5.0_add-default-shell-env.patch',
|
||||
'TensorFlow-2.5.0_add-protobuf-deps.patch',
|
||||
'TensorFlow-2.5.0_add-support-for-large-core-systems.patch',
|
||||
'TensorFlow-2.5.0_disable-avx512-extensions.patch',
|
||||
'TensorFlow-2.5.0-fix-alias-violation-in-absl.patch',
|
||||
'TensorFlow-2.5.0_fix-alignment-in-matmul-test.patch',
|
||||
'TensorFlow-2.5.0_fix-arm-vector-intrinsics.patch',
|
||||
'TensorFlow-2.5.0_fix-crash-on-shutdown.patch',
|
||||
'TensorFlow-2.5.0_remove-duplicate-gpu-tests.patch',
|
||||
],
|
||||
'checksums': [
|
||||
'233875ea27fc357f6b714b2a0de5f6ff124b50c1ee9b3b41f9e726e9e677b86c', # v2.5.0.tar.gz
|
||||
'78c20aeaa7784b8ceb46238a81e8c2461137d28e0b576deeba8357d23fbe1f5a', # TensorFlow-2.1.0_fix-cuda-build.patch
|
||||
'917ee7282e782e48673596d8917c3207e60e0851bb9acf230a2a439b067af2e3', # TensorFlow-2.4.0_add-ldl.patch
|
||||
# TensorFlow-2.4.0_dont-use-var-lock.patch
|
||||
'b14f2493fd2edf79abd1c4f2dde6c98a3e7d5cb9c25ab9386df874d5f072d6b5',
|
||||
# TensorFlow-2.4.1_fix-min-priority-test.patch
|
||||
'389febce9a0612fd457daf4cb18c02f77fc7311bacae0963602a3198d9f2737f',
|
||||
# TensorFlow-2.5.0_add-default-shell-env.patch
|
||||
'09b0c5d4ff04f56a9657875471ed78001d4201cac795aeff62019d582115b468',
|
||||
# TensorFlow-2.5.0_add-protobuf-deps.patch
|
||||
'2aa79b89cff13e81f83e385761917d5d6dbdffd6b0366d90580761b958f14363',
|
||||
# TensorFlow-2.5.0_add-support-for-large-core-systems.patch
|
||||
'915f3477d6407fafd48269fe1e684a05ce361d9b9b85e58686682df87760f636',
|
||||
# TensorFlow-2.5.0_disable-avx512-extensions.patch
|
||||
'3655ce24c97569ac9738c07cac85347ba6f5c815ada95b19b606ffa46d4dda03',
|
||||
# TensorFlow-2.5.0-fix-alias-violation-in-absl.patch
|
||||
'12454fda3330fb45cd380377e283f04488b40e0b8ae7378e786ddf731a581f75',
|
||||
# TensorFlow-2.5.0_fix-alignment-in-matmul-test.patch
|
||||
'6a4d6cbf45a622b8a2c3ea0b1c0171f01f595684d9c57d415bb39b1b27e1180f',
|
||||
# TensorFlow-2.5.0_fix-arm-vector-intrinsics.patch
|
||||
'6abfadc0f67ff3b510d70430843201cb46d7bd65db045ec9b482af70e0c8c0c8',
|
||||
# TensorFlow-2.5.0_fix-crash-on-shutdown.patch
|
||||
'578c7493221ebd3dc25ca43d63a72cbb28fdf4112b1e2baa7390f25781bd78fd',
|
||||
# TensorFlow-2.5.0_remove-duplicate-gpu-tests.patch
|
||||
'b940d438e036faac24453bff2cf1834c5e1359e87e84d1f1999fa7a30b278fec',
|
||||
],
|
||||
'test_script': 'TensorFlow-2.x_mnist-test.py',
|
||||
'test_tag_filters_cpu': '-gpu,-tpu,-no_cuda_on_cpu_tap,-no_pip,-no_oss,-oss_serial,-benchmark-test,-v1only',
|
||||
'test_tag_filters_gpu': ('gpu,-no_gpu,-nogpu,-gpu_cupti,-no_cuda11,-no_pip,-no_oss,-oss_serial,'
|
||||
'-benchmark-test,-v1only'),
|
||||
'test_targets': [
|
||||
'//tensorflow/core/...',
|
||||
'-//tensorflow/core:example_java_proto',
|
||||
'-//tensorflow/core/example:example_protos_closure',
|
||||
'//tensorflow/cc/...',
|
||||
'//tensorflow/c/...',
|
||||
'//tensorflow/python/...',
|
||||
# Fails on some nodes but C API isn't installed anyway
|
||||
'-//tensorflow/c/eager:c_api_test_gpu',
|
||||
'-//tensorflow/c/eager:c_api_distributed_test',
|
||||
'-//tensorflow/c/eager:c_api_distributed_test_gpu',
|
||||
# Race condition with port picker: https://github.com/tensorflow/tensorflow/issues/46602
|
||||
'-//tensorflow/c/eager:c_api_cluster_test_gpu',
|
||||
'-//tensorflow/c/eager:c_api_remote_function_test_gpu',
|
||||
'-//tensorflow/c/eager:c_api_remote_test_gpu',
|
||||
# Fails to open its own test.xml(?)
|
||||
'-//tensorflow/core/common_runtime:collective_param_resolver_local_test',
|
||||
# Fails on non-AVX-512 systems: https://github.com/tensorflow/tensorflow/issues/46532
|
||||
'-//tensorflow/core/common_runtime:mkl_layout_pass_test',
|
||||
'-//tensorflow/core/kernels/mkl:mkl_fused_ops_test',
|
||||
# Fails on AMD EPYC systems: https://github.com/tensorflow/tensorflow/issues/52151
|
||||
'-//tensorflow/core/kernels/mkl:mkl_fused_batch_norm_op_test',
|
||||
],
|
||||
'testopts': "--test_timeout=3600 --test_size_filters=small",
|
||||
'testopts_gpu': "--test_timeout=3600 --test_size_filters=small " +
|
||||
"--run_under=//tensorflow/tools/ci_build/gpu_build:parallel_gpu_execute",
|
||||
'with_xla': True,
|
||||
}),
|
||||
]
|
||||
|
||||
cuda_compute_capabilities = ['8.0']
|
||||
|
||||
moduleclass = 'lib'
|
@ -4,7 +4,7 @@
|
||||
easyblock = 'MakeCp'
|
||||
|
||||
name = 'VASP'
|
||||
version = '6.3.1'
|
||||
version = '6.3.2'
|
||||
|
||||
homepage = 'http://www.vasp.at'
|
||||
description = """The Vienna Ab initio Simulation Package (VASP) is a local computer program for atomic scale
|
||||
@ -15,19 +15,20 @@ To use VASP, you need an academic license from University of Vienna. Follow the
|
||||
|
||||
Please send us a list of authorized users and their IDs for which you need access (use only http://support.it4i.cz/rt). We are responsible for verifying your licenses."""
|
||||
|
||||
toolchain = {'name': 'foss', 'version': '2022a'}
|
||||
toolchain = {'name': 'foss', 'version': '2021b'}
|
||||
toolchainopts = {'pic': True, 'usempi': True}
|
||||
|
||||
# Vasp is proprietary software, see http://www.vasp.at/index.php/faqs on
|
||||
# how to get access to the code
|
||||
sources = ['%(namelower)s.%(version)s.tgz']
|
||||
checksums = ['113db53c4346287c89982f52887a65d12d246e38de7ccd024e44499c4774dc66']
|
||||
checksums = ['f7595221b0f9236a324ea8afe170637a578cdd5a837cc7679e7f7812f6edf25a']
|
||||
|
||||
# use serial compilation of W90, see https://www.vasp.at/wiki/index.php/Makefile.include#Wannier90_.28optional.29
|
||||
# Important: In case of Wannier90 3.x, you should compile a serial version by removing COMMS=mpi in the make.inc of Wannier90.
|
||||
dependencies = [
|
||||
('HDF5', '1.13.1'),
|
||||
('HDF5', '1.12.1'),
|
||||
('Wannier90', '3.1.0', '-serial'),
|
||||
('FFTW', '3.3.10', '-amd'),
|
||||
]
|
||||
|
||||
prebuildopts = 'cp arch/makefile.include.gnu ./makefile.include && '
|
||||
@ -38,7 +39,7 @@ prebuildopts += 'sed -i "s|\(OFLAG\s\+=\) -O2|\\1 -O3 -march=native|" makefile.i
|
||||
# FFLAGS, SCALAPACK and FFTW
|
||||
prebuildopts += 'sed -i "s|\(FFLAGS\s\+=\) -w -ffpe-summary=none|\\1 -FR -ffpe-summary=none|" makefile.include && '
|
||||
prebuildopts += 'sed -i "s|\(SCALAPACK_ROOT\s\+?=\) /path/to/your/scalapack/installation|\\1 ${EBROOTSCALAPACK}|" makefile.include && '
|
||||
prebuildopts += 'sed -i "s|\(FFTW_ROOT\s\+?=\) /path/to/your/fftw/installation|\\1 ${EBROOTFFTWMPI}|" makefile.include && '
|
||||
prebuildopts += 'sed -i "s|\(FFTW_ROOT\s\+?=\) /path/to/your/fftw/installation|\\1 ${EBROOTFFTW}|" makefile.include && '
|
||||
|
||||
# FLexiBLAS shadows OpenBLAS, for more info see FlexiBLAS description
|
||||
prebuildopts += 'sed -i "s|\(OPENBLAS_ROOT\s\+?=\) /path/to/your/openblas/installation|\\1 ${EBROOTFLEXIBLAS}|" makefile.include && '
|
41
w/Wannier90/Wannier90-3.1.0-foss-2021b-serial.eb
Normal file
41
w/Wannier90/Wannier90-3.1.0-foss-2021b-serial.eb
Normal file
@ -0,0 +1,41 @@
|
||||
# IT4Innovations 2022
|
||||
# JK
|
||||
|
||||
easyblock = 'MakeCp'
|
||||
|
||||
name = 'Wannier90'
|
||||
version = '3.1.0'
|
||||
versionsuffix = '-serial'
|
||||
|
||||
homepage = 'http://www.wannier.org'
|
||||
description = """A tool for obtaining maximally-localised Wannier functions"""
|
||||
|
||||
toolchain = {'name': 'foss', 'version': '2021b'}
|
||||
toolchainopts = {'usempi': True}
|
||||
|
||||
github_account = 'wannier-developers'
|
||||
source_urls = [GITHUB_LOWER_SOURCE]
|
||||
sources = [{'download_filename': 'v%(version)s.tar.gz', 'filename': SOURCELOWER_TAR_GZ}]
|
||||
patches = ['Wannier90_3x_ignore_makeinc.patch']
|
||||
checksums = [
|
||||
'40651a9832eb93dec20a8360dd535262c261c34e13c41b6755fa6915c936b254', # wannier90-3.1.0.tar.gz
|
||||
'561c0d296e0e30b8bb303702cd6e41ded54c153d9b9e6cd9cab73858e5e2945e', # Wannier90_3x_ignore_makeinc.patch
|
||||
]
|
||||
|
||||
dependencies = [('FFTW', '3.3.10', '-amd')]
|
||||
|
||||
buildopts = 'all F90=$F90 MPIF90=$MPIF90 FCOPTS="$FFLAGS" LDOPTS="$FFLAGS" '
|
||||
buildopts += 'LIBDIR="$LAPACK_LIB_DIR" LIBS="$LIBLAPACK" '
|
||||
|
||||
# compile serial version for use with VASP per
|
||||
# https://www.vasp.at/wiki/index.php/Makefile.include#Wannier90_.28optional.29
|
||||
#buildopts += 'COMMS=mpi'
|
||||
|
||||
files_to_copy = [(['wannier90.x', 'postw90.x'], 'bin'), (['libwannier.a'], 'lib')]
|
||||
|
||||
sanity_check_paths = {
|
||||
'files': ['bin/wannier90.x', 'bin/postw90.x', 'lib/libwannier.a'],
|
||||
'dirs': []
|
||||
}
|
||||
|
||||
moduleclass = 'chem'
|
Loading…
x
Reference in New Issue
Block a user