mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-04-18 05:50:54 +01:00
148 lines
5.8 KiB
Plaintext
148 lines
5.8 KiB
Plaintext
/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
//
|
|
// This sample uses the compressible memory allocation if device supports it
|
|
// and performs saxpy on it.
|
|
// Compressible memory may give better performance if the data is amenable to
|
|
// compression.
|
|
|
|
#include <stdio.h>
|
|
#include <cuda.h>
|
|
#define CUDA_DRIVER_API
|
|
#include "helper_cuda.h"
|
|
#include "compMalloc.h"
|
|
|
|
__global__ void saxpy(float a, float4 *x, float4 *y, float4 *z, int64_t n)
|
|
{
|
|
int64_t i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (i >= n)
|
|
return;
|
|
z[i] = make_float4(a * x[i].x + y[i].x,
|
|
a * x[i].y + y[i].y,
|
|
a * x[i].z + y[i].z,
|
|
a * x[i].w + y[i].w);
|
|
}
|
|
|
|
__global__ void init(float4 *x, float4 *y, float4 *z, float val, int64_t n)
|
|
{
|
|
int64_t i = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (i < n)
|
|
{
|
|
x[i] = make_float4(val, val, val, val);
|
|
y[i] = make_float4(val, val, val, val);
|
|
z[i] = make_float4(val, val, val, val);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
int devId, UseCompressibleMemory = 1;
|
|
int64_t n = 10485760;
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "help") ||
|
|
checkCmdLineFlag(argc, (const char **)argv, "?")) {
|
|
printf("Usage -device=n (n >= 0 for deviceID)\n");
|
|
printf(" -UseCompressibleMemory=0 or 1 (default is 1 : Use compressible memory)\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "UseCompressibleMemory")) {
|
|
UseCompressibleMemory = getCmdLineArgumentInt(argc, (const char **)argv, "UseCompressibleMemory");
|
|
if (UseCompressibleMemory > 1) {
|
|
printf("Permitted options for UseCompressibleMemory are 0 or 1, you have entered %d \n", UseCompressibleMemory);
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
}
|
|
|
|
devId = findCudaDevice(argc, (const char**)argv);
|
|
CUdevice currentDevice;
|
|
checkCudaErrors(cuCtxGetDevice(¤tDevice));
|
|
|
|
// Check that the selected device supports virtual address management
|
|
int vam_supported = -1;
|
|
checkCudaErrors(cuDeviceGetAttribute(&vam_supported,
|
|
CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
|
|
currentDevice));
|
|
printf("Device %d VIRTUAL ADDRESS MANAGEMENT SUPPORTED = %d.\n", currentDevice, vam_supported);
|
|
if (vam_supported == 0) {
|
|
printf("Device %d doesn't support VIRTUAL ADDRESS MANAGEMENT, so not using compressible memory.\n", currentDevice);
|
|
UseCompressibleMemory = 0;
|
|
}
|
|
|
|
int nsm = 0;
|
|
checkCudaErrors(cudaDeviceGetAttribute(&nsm, cudaDevAttrMultiProcessorCount, devId));
|
|
printf("Found %d SMs on the device\n", nsm);
|
|
|
|
float4 *x, *y, *z;
|
|
size_t size = n * sizeof(float4);
|
|
if (UseCompressibleMemory) {
|
|
checkCudaErrors(cudaMallocCompressible((void **)&x, size));
|
|
checkCudaErrors(cudaMallocCompressible((void **)&y, size));
|
|
checkCudaErrors(cudaMallocCompressible((void **)&z, size));
|
|
}
|
|
else {
|
|
printf("Using non compressible memory\n");
|
|
checkCudaErrors(cudaMalloc((void **)&x, size));
|
|
checkCudaErrors(cudaMalloc((void **)&y, size));
|
|
checkCudaErrors(cudaMalloc((void **)&z, size));
|
|
}
|
|
|
|
printf("Running saxpy on %lu bytes\n", size);
|
|
|
|
cudaEvent_t start, stop;
|
|
float ms;
|
|
checkCudaErrors(cudaEventCreate(&start));
|
|
checkCudaErrors(cudaEventCreate(&stop));
|
|
dim3 threads(1024, 1, 1);
|
|
dim3 blocks;
|
|
|
|
init<<<n / 1024, 1024>>>(x, y, z, 1.0f, n);
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
// Running with single element per thread, lots of blocks
|
|
blocks = dim3(n / threads.x, 1, 1);
|
|
checkCudaErrors(cudaEventRecord(start));
|
|
saxpy<<<blocks, threads>>>(1.0f, x, y, z, n);
|
|
checkCudaErrors(cudaEventRecord(stop));
|
|
checkCudaErrors(cudaEventSynchronize(stop));
|
|
checkCudaErrors(cudaEventElapsedTime(&ms, start, stop));
|
|
printf("Running saxpy with %d blocks x %d threads = %.3f ms %.3f TB/s\n", blocks.x, threads.x, ms, (size*3)/ms/1e9);
|
|
|
|
if (UseCompressibleMemory) {
|
|
checkCudaErrors(cudaFreeCompressible(x, size));
|
|
checkCudaErrors(cudaFreeCompressible(y, size));
|
|
checkCudaErrors(cudaFreeCompressible(z, size));
|
|
}
|
|
else {
|
|
checkCudaErrors(cudaFree(x));
|
|
checkCudaErrors(cudaFree(y));
|
|
checkCudaErrors(cudaFree(z));
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
} |