mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-04-23 08:11:23 +01:00

Note that the Black-Scholes method can only be used for the European options. For validating the GPU results the computed prices are only compared to the CPU version of binomial options algorithm.
235 lines
7.6 KiB
C++
235 lines
7.6 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This sample evaluates fair call price for a
|
|
* given set of European options under binomial model.
|
|
* See supplied whitepaper for more explanations.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
#include "binomialOptions_common.h"
|
|
#include "realtype.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Black-Scholes formula for binomial tree results validation
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void BlackScholesCall(real &callResult, TOptionData optionData);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Process single option on CPU
|
|
// Note that CPU code is for correctness testing only and not for benchmarking.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void binomialOptionsCPU(real &callResult, TOptionData optionData,
|
|
option_t option_type);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Process an array of OptN options on GPU
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void binomialOptionsGPU(real *callValue, TOptionData *optionData,
|
|
int optN, option_t option_type);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Helper function, returning uniformly distributed
|
|
// random float in [low, high] range
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
real randData(real low, real high) {
|
|
real t = (real)rand() / (real)RAND_MAX;
|
|
return ((real)1.0 - t) * low + t * high;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Main program
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
printf("[%s] - Starting...\n", argv[0]);
|
|
|
|
int devID = findCudaDevice(argc, (const char **)argv);
|
|
|
|
const int OPT_N = MAX_OPTIONS;
|
|
|
|
TOptionData optionData[MAX_OPTIONS];
|
|
real callValueBS[MAX_OPTIONS], callValueGPU[MAX_OPTIONS],
|
|
callValueCPU[MAX_OPTIONS];
|
|
|
|
real sumDelta, sumRef, gpuTime, errorVal;
|
|
|
|
StopWatchInterface *hTimer = NULL;
|
|
int i;
|
|
|
|
sdkCreateTimer(&hTimer);
|
|
|
|
printf("Generating input data...\n");
|
|
// Generate options set
|
|
srand(123);
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
optionData[i].S = randData(5.0f, 30.0f);
|
|
optionData[i].X = randData(1.0f, 100.0f);
|
|
optionData[i].T = randData(0.25f, 10.0f);
|
|
optionData[i].R = 0.06f;
|
|
optionData[i].V = 0.10f;
|
|
BlackScholesCall(callValueBS[i], optionData[i]);
|
|
}
|
|
|
|
option_t option_type = EU;
|
|
|
|
printf("Running GPU binomial tree (EU)...\n");
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
|
|
binomialOptionsGPU(callValueGPU, optionData, OPT_N, option_type);
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer);
|
|
printf("Options count : %i \n", OPT_N);
|
|
printf("Time steps : %i \n", NUM_STEPS);
|
|
printf("binomialOptionsGPU() time: %f msec\n", gpuTime);
|
|
printf("Options per second : %f \n", OPT_N / (gpuTime * 0.001));
|
|
|
|
printf("Running CPU binomial tree (EU)...\n");
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
binomialOptionsCPU(callValueCPU[i], optionData[i], option_type);
|
|
}
|
|
|
|
printf("Comparing the results (EU)...\n");
|
|
sumDelta = 0;
|
|
sumRef = 0;
|
|
printf("GPU binomial vs. Black-Scholes\n");
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
sumDelta += fabs(callValueBS[i] - callValueGPU[i]);
|
|
sumRef += fabs(callValueBS[i]);
|
|
}
|
|
|
|
if (sumRef > 1E-5) {
|
|
printf("L1 norm: %E\n", (double)(sumDelta / sumRef));
|
|
} else {
|
|
printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N));
|
|
}
|
|
|
|
printf("CPU binomial vs. Black-Scholes\n");
|
|
sumDelta = 0;
|
|
sumRef = 0;
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
sumDelta += fabs(callValueBS[i] - callValueCPU[i]);
|
|
sumRef += fabs(callValueBS[i]);
|
|
}
|
|
|
|
if (sumRef > 1E-5) {
|
|
printf("L1 norm: %E\n", sumDelta / sumRef);
|
|
} else {
|
|
printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N));
|
|
}
|
|
|
|
printf("CPU binomial vs. GPU binomial\n");
|
|
sumDelta = 0;
|
|
sumRef = 0;
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
sumDelta += fabs(callValueGPU[i] - callValueCPU[i]);
|
|
sumRef += callValueCPU[i];
|
|
}
|
|
|
|
if (sumRef > 1E-5) {
|
|
printf("L1 norm: %E\n", errorVal = sumDelta / sumRef);
|
|
} else {
|
|
printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N));
|
|
}
|
|
|
|
if (errorVal > 5e-4) {
|
|
printf("Test failed!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
option_type = NA;
|
|
|
|
printf("\nRunning GPU binomial tree (NA)...\n");
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
|
|
binomialOptionsGPU(callValueGPU, optionData, OPT_N, option_type);
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer);
|
|
printf("Options count : %i \n", OPT_N);
|
|
printf("Time steps : %i \n", NUM_STEPS);
|
|
printf("binomialOptionsGPU() time: %f msec\n", gpuTime);
|
|
printf("Options per second : %f \n", OPT_N / (gpuTime * 0.001));
|
|
|
|
printf("Running CPU binomial tree (NA)...\n");
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
binomialOptionsCPU(callValueCPU[i], optionData[i], option_type);
|
|
}
|
|
|
|
printf("CPU binomial vs. GPU binomial\n");
|
|
sumDelta = 0;
|
|
sumRef = 0;
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
sumDelta += fabs(callValueGPU[i] - callValueCPU[i]);
|
|
sumRef += callValueCPU[i];
|
|
}
|
|
|
|
if (sumRef > 1E-5) {
|
|
printf("L1 norm: %E\n", errorVal = sumDelta / sumRef);
|
|
} else {
|
|
printf("Avg. diff: %E\n", (double)(sumDelta / (real)OPT_N));
|
|
}
|
|
|
|
printf("Shutting down...\n");
|
|
|
|
sdkDeleteTimer(&hTimer);
|
|
|
|
printf(
|
|
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
|
|
"Results may vary when GPU Boost is enabled.\n\n");
|
|
|
|
if (errorVal > 5e-4) {
|
|
printf("Test failed!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("Test passed\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|