# graphMemoryFootprint - Graph Memory Footprint ## Description This sample demonstrates how graph memory nodes re-use virtual addresses and physical memory. ## Key Concepts CUDA Runtime API, Performance Strategies, CUDA Graphs ## Supported SM Architectures [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux, Windows ## Supported CPU Architecture x86_64, armv7l ## CUDA APIs involved ### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html) cudaGraphAddMemAllocNode, cudaStreamCreateWithFlags, cudaGraphInstantiate, cudaStreamDestroy, cudaFree, cudaDeviceGetAttribute, cudaGraphAddKernelNode, cudaGraphAddMemFreeNode, cudaDeviceGetGraphMemAttribute, cudaGraphCreate, cudaGraphDestroy, cudaDriverGetVersion, cudaGraphLaunch, cudaStreamSynchronize, cudaDeviceGraphMemTrim, cudaGetDeviceProperties, cudaGraphExecDestroy ## Prerequisites Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. ## References (for more details)