# convolutionFFT2D - FFT-Based 2D Convolution ## Description This sample demonstrates how 2D convolutions with very large kernel sizes can be efficiently implemented using FFT transformations. ## Key Concepts Image Processing, CUFFT Library ## Supported SM Architectures [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux, Windows ## Supported CPU Architecture x86_64, armv7l ## CUDA APIs involved ### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html) cudaMemcpy, cudaFree, cudaDestroyTextureObject, cudaDeviceSynchronize, cudaCreateTextureObject, cudaMemset, cudaMalloc ## Dependencies needed to build/run [CUFFT](../../../README.md#cufft) ## Prerequisites Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. Make sure the dependencies mentioned in [Dependencies]() section above are installed. ## References (for more details)