# dct8x8 - DCT8x8 ## Description This sample demonstrates how Discrete Cosine Transform (DCT) for blocks of 8 by 8 pixels can be performed using CUDA: a naive implementation by definition and a more traditional approach used in many libraries. As opposed to implementing DCT in a fragment shader, CUDA allows for an easier and more efficient implementation. ## Key Concepts Image Processing, Video Compression ## Supported SM Architectures [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux, Windows ## Supported CPU Architecture x86_64, armv7l ## CUDA APIs involved ### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html) cudaMallocArray, cudaFreeArray, cudaFree, cudaMallocPitch, cudaDestroyTextureObject, cudaDeviceSynchronize, cudaCreateTextureObject ## Prerequisites Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. ## References (for more details) [whitepaper](./doc/dct8x8.pdf)