# matrixMul_nvrtc - Matrix Multiplication with libNVRTC ## Description This sample implements matrix multiplication and is exactly the same as Chapter 6 of the programming guide. It has been written for clarity of exposition to illustrate various CUDA programming principles, not with the goal of providing the most performant generic kernel for matrix multiplication. To illustrate GPU performance for matrix multiply, this sample also shows how to use the new CUDA 4.0 interface for CUBLAS to demonstrate high-performance performance for matrix multiplication. ## Key Concepts CUDA Runtime API, Linear Algebra, Runtime Compilation ## Supported SM Architectures [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux, Windows, QNX ## Supported CPU Architecture x86_64, aarch64 ## CUDA APIs involved ### [CUDA Driver API](http://docs.nvidia.com/cuda/cuda-driver-api/index.html) cuMemcpyDtoH, cuLaunchKernel, cuMemcpyHtoD, cuCtxSynchronize, cuMemAlloc, cuMemFree, cuModuleGetFunction ## Dependencies needed to build/run [NVRTC](../../../README.md#nvrtc) ## Prerequisites Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. Make sure the dependencies mentioned in [Dependencies]() section above are installed. ## References (for more details)