# simpleMultiGPU - Simple Multi-GPU ## Description This application demonstrates how to use the new CUDA 4.0 API for CUDA context management and multi-threaded access to run CUDA kernels on multiple-GPUs. ## Key Concepts Asynchronous Data Transfers, CUDA Streams and Events, Multithreading, Multi-GPU ## Supported SM Architectures [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux, Windows ## Supported CPU Architecture x86_64, armv7l ## CUDA APIs involved ### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html) cudaStreamDestroy, cudaFree, cudaMallocHost, cudaSetDevice, cudaFreeHost, cudaStreamSynchronize, cudaMalloc, cudaMemcpyAsync, cudaStreamCreate, cudaGetDeviceCount ## Prerequisites Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. ## References (for more details)