# MC_EstimatePiInlineQ - Monte Carlo Estimation of Pi (inline QRNG) ## Description This sample uses Monte Carlo simulation for Estimation of Pi (using inline QRNG). This sample also uses the NVIDIA CURAND library. ## Key Concepts Random Number Generator, Computational Finance, CURAND Library ## Supported SM Architectures [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux, Windows ## Supported CPU Architecture x86_64, ppc64le, armv7l ## CUDA APIs involved ### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html) cudaMemcpy, cudaGetErrorString, cudaFree, cudaSetDevice, cudaGetDeviceCount, cudaMalloc, cudaFuncGetAttributes, cudaGetDeviceProperties ## Dependencies needed to build/run [CURAND](../../../README.md#curand) ## Prerequisites Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. Make sure the dependencies mentioned in [Dependencies]() section above are installed. ## References (for more details)