Remove legacy fluidsD3D9

This commit is contained in:
Rob Armstrong 2024-12-13 15:37:58 -08:00
parent 035dcfd357
commit c9794ff283
10 changed files with 1 additions and 1366 deletions

View File

@ -17,6 +17,7 @@
* `batchedLabelMarkersAndLabelCompressionNPP` demonstrating NPP features (reason: some functionality removed from library)
* `5_Domain_Specific`
* Legacy Direct3D 9 and 10 interoperability samples:
* `fluidsD3D9`
* `simpleD3D10`
* `simpleD3D10RenderTarget`
* `simpleD3D10Texture`

View File

@ -1,46 +0,0 @@
################################################################################
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
#
# Makefile project only supported on Mac OS X and Linux Platforms)
#
################################################################################
# Target rules
all: build
build:
$(info >>> WARNING - fluidsD3D9 is not supported on Linux - waiving sample <<<)
run: build
testrun: build
clean:
clobber: clean

View File

@ -1,49 +0,0 @@
# fluidsD3D9 - Fluids (Direct3D Version)
## Description
An example of fluid simulation using CUDA and CUFFT, with Direct3D 9 rendering. A Direct3D Capable device is required.
## Key Concepts
Graphics Interop, CUFFT Library, Physically-Based Simulation
## Supported SM Architectures
[SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Windows
## Supported CPU Architecture
x86_64
## CUDA APIs involved
### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
cudaGraphicsUnmapResources, cudaMemcpy, cudaMallocArray, cudaFreeArray, cudaFree, cudaMallocPitch, cudaGraphicsResourceGetMappedPointer, cudaGetLastError, cudaGraphicsMapResources, cudaDestroyTextureObject, cudaGetDevice, cudaCreateTextureObject, cudaGraphicsUnregisterResource, cudaMalloc, cudaGetDeviceProperties
## Dependencies needed to build/run
[DirectX](../../../README.md#directx)
## Prerequisites
Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## Build and Run
### Windows
The Windows samples are built using the Visual Studio IDE. Solution files (.sln) are provided for each supported version of Visual Studio, using the format:
```
*_vs<version>.sln - for Visual Studio <version>
```
Each individual sample has its own set of solution files in its directory:
To build/examine all the samples at once, the complete solution files should be used. To build/examine a single sample, the individual sample solution files should be used.
> **Note:** Some samples require that the Microsoft DirectX SDK (June 2010 or newer) be installed and that the VC++ directory paths are properly set up (**Tools > Options...**). Check DirectX Dependencies section for details."
## References (for more details)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 KiB

View File

@ -1,829 +0,0 @@
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma warning(disable : 4312)
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
#define WINDOWS_LEAN_AND_MEAN
#include <windows.h>
#endif
// including CUDA headers and helper functions
#include <builtin_types.h>
#include <cuda_runtime.h>
#include <cufft.h>
#include <cuda_d3d9_interop.h>
// SDK helper functions
#include <helper_cuda.h>
#include <helper_functions.h>
#include "fluidsD3D9_kernels.h"
#include <rendercheck_d3d9.h>
#include <DirectXMath.h>
using namespace DirectX;
#define MAX_EPSILON 10
static char *SDK_name = "fluidsD3D9";
int *pArgc = NULL;
char **pArgv = NULL;
// CUDA example code that implements the frequency space version of
// Jos Stam's paper 'Stable Fluids' in 2D. This application uses the
// CUDA FFT library (CUFFT) to perform velocity diffusion and to
// force non-divergence in the velocity field at each time step. It uses
// CUDA-OpenGL interoperability to update the particle field directly
// instead of doing a copy to system memory before drawing. Texture is
// used for automatic bilinear interpolation at the velocity advection step.
HWND hWnd; // Window handle
LPDIRECT3D9EX g_pD3D = NULL; // Used to create the D3DDevice
unsigned int g_iAdapter = NULL; // Adapter
LPDIRECT3DDEVICE9EX g_pD3DDevice = NULL; // Rendering device
LPDIRECT3DVERTEXBUFFER9 g_pVB = NULL; // Buffer to hold particles
LPDIRECT3DTEXTURE9 g_pTexture = NULL; // Texture to render points
struct cudaGraphicsResource *cuda_VB_resource; // handles D3D9-CUDA exchange
HRESULT InitD3D9(HWND hWnd);
HRESULT InitD3D9RenderState();
HRESULT InitCUDA();
HRESULT InitCUFFT();
HRESULT InitVertexBuffer();
HRESULT FreeVertexBuffer();
HRESULT InitPointTexture();
HRESULT RestoreContextResources();
#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ | D3DFVF_DIFFUSE)
void updateVB(void);
void initParticles(cData *p, int dx, int dy);
// CUFFT plan handle
static cufftHandle g_planr2c;
static cufftHandle g_planc2r;
static cData *g_vxfield = NULL;
static cData *g_vyfield = NULL;
cData *g_hvfield = NULL;
cData *g_dvfield = NULL;
static int wWidth = MAX(512, DIM);
static int wHeight = MAX(512, DIM);
static int clicked = 0;
static int fpsCount = 0;
static int fpsLimit = 1;
StopWatchInterface *timer = NULL;
// Particle data
static Vertex *g_mparticles = NULL;
static cData *g_particles = NULL;
static int lastx = 0, lasty = 0;
// Texture pitch
// unsigned int g_tPitch = 0;
size_t g_tPitch = 0;
D3DDISPLAYMODEEX g_d3ddm;
D3DPRESENT_PARAMETERS g_d3dpp;
bool g_bWindowed = true;
bool g_bDeviceLost = false;
bool g_bPassed = true;
int g_iFrameToCompare = 100;
bool g_bQAAddTestForce = true;
char *ref_file = NULL;
#define NAME_LEN 512
char device_name[NAME_LEN];
VOID Cleanup() {
// Unregister vertex buffer
FreeVertexBuffer();
deleteTexture();
// Free all host and device resources
free(g_hvfield);
free(g_particles);
cudaFree(g_dvfield);
cudaFree(g_vxfield);
cudaFree(g_vyfield);
cufftDestroy(g_planr2c);
cufftDestroy(g_planc2r);
if (g_pTexture != NULL) {
g_pTexture->Release();
g_pTexture = NULL;
}
if (g_pD3DDevice != NULL) {
g_pD3DDevice->Release();
g_pD3DDevice = NULL;
}
if (g_pD3D != NULL) {
g_pD3D->Release();
g_pD3D = NULL;
}
sdkDeleteTimer(&timer);
}
LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) {
switch (msg) {
case WM_DESTROY:
Cleanup();
PostQuitMessage(0);
exit(g_bPassed ? EXIT_SUCCESS : EXIT_FAILURE);
return 0;
case WM_KEYDOWN:
switch (wParam) {
case 27:
Cleanup();
PostQuitMessage(0);
break;
case 0x52:
memset(g_hvfield, 0, sizeof(cData) * DS);
cudaMemcpy(g_dvfield, g_hvfield, sizeof(cData) * DS,
cudaMemcpyHostToDevice);
initParticles(g_particles, DIM, DIM);
cudaGraphicsUnregisterResource(cuda_VB_resource);
updateVB();
cudaGraphicsD3D9RegisterResource(&cuda_VB_resource, g_pVB,
cudaD3D9RegisterFlagsNone);
getLastCudaError("cudaGraphicsD3D9RegisterResource failed");
break;
default:
break;
}
break;
case WM_SIZE:
wWidth = LOWORD(lParam);
wHeight = HIWORD(lParam);
break;
case WM_MOUSEMOVE:
if (wParam == MK_LBUTTON) {
clicked = 1;
} else {
clicked = 0;
}
int x = LOWORD(lParam), y = HIWORD(lParam);
// Convert motion coordinates to domain
float fx = (x / (float)wWidth);
float fy = (y / (float)wHeight);
int nx = (int)(fx * DIM);
int ny = (int)(fy * DIM);
if (clicked && nx < DIM - FR && nx > FR - 1 && ny < DIM - FR &&
ny > FR - 1) {
int ddx = LOWORD(lParam) - lastx;
int ddy = HIWORD(lParam) - lasty;
fx = ddx / (float)wWidth;
fy = ddy / (float)wHeight;
int spy = ny - FR;
int spx = nx - FR;
addForces(g_dvfield, DIM, DIM, spx, spy, FORCE * DT * fx,
FORCE * DT * fy, FR, g_tPitch);
lastx = x;
lasty = y;
}
break;
}
return DefWindowProc(hWnd, msg, wParam, lParam);
}
HRESULT InitVertexBuffer() {
// Create the vertex buffer.
if (FAILED(g_pD3DDevice->CreateVertexBuffer(DS * sizeof(Vertex), 0,
D3DFVF_CUSTOMVERTEX,
D3DPOOL_DEFAULT, &g_pVB, NULL))) {
return E_FAIL;
}
// Initialize the Vertex Buffer with the particles
updateVB();
cudaGraphicsD3D9RegisterResource(&cuda_VB_resource, g_pVB,
cudaD3D9RegisterFlagsNone);
getLastCudaError("cudaGraphicsD3D9RegisterResource failed");
return S_OK;
}
HRESULT InitPointTexture() {
// Create the texture.
int width = 64;
int height = width;
if (FAILED(g_pD3DDevice->CreateTexture(
width, height, 0, D3DUSAGE_AUTOGENMIPMAP | D3DUSAGE_DYNAMIC,
D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT, &g_pTexture, NULL))) {
return E_FAIL;
}
// Fill in top level
D3DLOCKED_RECT rect;
if (FAILED(g_pTexture->LockRect(0, &rect, 0, 0))) {
return E_FAIL;
}
typedef unsigned int TexelType;
TexelType *texel = (TexelType *)rect.pBits;
for (int y = -height / 2; y < height / 2; ++y) {
float yf = y + 0.5f;
TexelType *t = texel;
for (int x = -width / 2; x < width / 2; ++x) {
float xf = x + 0.5f;
float radius = (float)width / 32;
float dist = sqrtf(xf * xf + yf * yf) / radius;
float n = 0.1f;
float value;
if (dist < 1) {
value = 1 - 0.5f * powf(dist, n);
} else if (dist < 2) {
value = 0.5f * powf(2 - dist, n);
} else {
value = 0;
}
value *= 75;
unsigned char *c = (unsigned char *)t;
c[0] = c[1] = c[2] = c[3] = (unsigned char)value;
++t;
}
texel += rect.Pitch / sizeof(TexelType);
}
if (FAILED(g_pTexture->UnlockRect(0))) {
return E_FAIL;
}
// Set sampler state
if (FAILED(g_pD3DDevice->SetSamplerState(0, D3DSAMP_MINFILTER,
D3DTEXF_LINEAR))) {
return E_FAIL;
}
if (FAILED(g_pD3DDevice->SetSamplerState(0, D3DSAMP_MAGFILTER,
D3DTEXF_LINEAR))) {
return E_FAIL;
}
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: FreeVertexBuffer()
// Desc: Free's the Vertex Buffer resource
//-----------------------------------------------------------------------------
HRESULT FreeVertexBuffer() {
if (g_pVB != NULL) {
// Unregister vertex buffer
cudaGraphicsUnregisterResource(cuda_VB_resource);
getLastCudaError("cudaGraphicsUnregisterResource failed");
g_pVB->Release();
}
return S_OK;
}
void updateVB(void) {
Vertex *data = new Vertex[DS];
g_pVB->Lock(0, DS * sizeof(Vertex), (void **)&data, 0);
for (int i = 0; i < DS; i++) {
data[i].x = g_particles[i].x;
data[i].y = g_particles[i].y;
data[i].z = 0.f;
data[i].c = 0xff00ff00;
}
g_pVB->Unlock();
}
HRESULT InitD3D9(HWND hWnd) {
// Create the D3D object.
if (S_OK != Direct3DCreate9Ex(D3D_SDK_VERSION, &g_pD3D)) {
return E_FAIL;
}
D3DADAPTER_IDENTIFIER9 adapterId;
int device;
bool bDeviceFound = false;
printf("\n");
cudaError cuStatus;
for (g_iAdapter = 0; g_iAdapter < g_pD3D->GetAdapterCount(); g_iAdapter++) {
HRESULT hr = g_pD3D->GetAdapterIdentifier(g_iAdapter, 0, &adapterId);
if (FAILED(hr)) {
continue;
}
// clear any errors we got while querying invalid compute devices
cuStatus = cudaGetLastError();
cuStatus = cudaD3D9GetDevice(&device, adapterId.DeviceName);
printLastCudaError("cudaD3D9GetDevice failed"); // This prints and resets
// the cudaError to
// cudaSuccess
printf("> Display Device #%d: \"%s\" %s Direct3D9\n", g_iAdapter,
adapterId.Description,
(cuStatus == cudaSuccess) ? "supports" : "does not support");
if (cudaSuccess == cuStatus) {
bDeviceFound = true;
STRCPY(device_name, NAME_LEN, adapterId.Description);
break;
}
}
// we check to make sure we have found a cuda-compatible D3D device to work on
if (!bDeviceFound) {
printf("\nNo CUDA-compatible Direct3D9 device available\n");
// Release the D3D device
g_pD3D->Release();
exit(EXIT_SUCCESS);
}
cudaGetDevice(&device);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, device);
strcpy(device_name, deviceProp.name);
RECT rc;
GetClientRect(hWnd, &rc);
g_pD3D->GetAdapterDisplayModeEx(g_iAdapter, &g_d3ddm, NULL);
// Set up the structure used to create the D3DDevice
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = g_d3ddm.Format; // D3DFMT_UNKNOWN;
// Create the D3DDevice
if (FAILED(g_pD3D->CreateDeviceEx(g_iAdapter, D3DDEVTYPE_HAL, hWnd,
D3DCREATE_HARDWARE_VERTEXPROCESSING, &d3dpp,
NULL, &g_pD3DDevice))) {
return E_FAIL;
} else {
return S_OK;
}
}
// Initialize the D3D Rendering State
HRESULT InitD3D9RenderState() {
// Set projection matrix
XMMATRIX matProj;
XMFLOAT4X4 matProjFloat;
matProj = XMMatrixOrthographicOffCenterLH(0, 1, 1, 0, 0, 1);
XMStoreFloat4x4(&matProjFloat, matProj);
g_pD3DDevice->SetTransform(D3DTS_PROJECTION, (D3DMATRIX *)&matProjFloat);
// Turn off D3D lighting, since we are providing our own vertex colors
if (FAILED(g_pD3DDevice->SetRenderState(D3DRS_LIGHTING, FALSE))) {
return E_FAIL;
}
return S_OK;
}
HRESULT InitCUDA() {
printf("InitCUDA() g_pD3DDevice = %p\n", g_pD3DDevice);
// Now we need to bind a CUDA context to the DX9 device
// This is the CUDA 2.0 DX9 interface (required for Windows XP and Vista)
cudaD3D9SetDirect3DDevice(g_pD3DDevice);
getLastCudaError("cudaD3D9SetDirect3DDevice failed");
return S_OK;
}
////////////////////////////////////////////////////////////////////////////////
//! RestoreContextResourcess
// - this function restores all of the CUDA/D3D resources and contexts
////////////////////////////////////////////////////////////////////////////////
HRESULT RestoreContextResources() {
// Reinitialize D3D9 resources, CUDA resources/contexts
InitCUDA();
InitD3D9RenderState();
InitCUFFT();
InitVertexBuffer();
InitPointTexture();
return S_OK;
}
////////////////////////////////////////////////////////////////////////////////
//! DeviceLostHandler
// - this function handles reseting and initialization of the D3D device
// in the event this Device gets Lost
////////////////////////////////////////////////////////////////////////////////
HRESULT DeviceLostHandler() {
HRESULT hr = S_OK;
// test the cooperative level to see if it's okay
// to render
if (FAILED(hr = g_pD3DDevice->TestCooperativeLevel())) {
// if the device was truly lost, (i.e., a fullscreen device just lost
// focus), wait
// until we g_et it back
if (hr == D3DERR_DEVICELOST) {
return S_OK;
}
// eventually, we will g_et this return value,
// indicating that we can now reset the device
if (hr == D3DERR_DEVICENOTRESET) {
// if we are windowed, read the desktop mode and use the same format for
// the back buffer; this effectively turns off color conversion
if (g_bWindowed) {
g_pD3D->GetAdapterDisplayModeEx(g_iAdapter, &g_d3ddm, NULL);
g_d3dpp.BackBufferFormat = g_d3ddm.Format;
}
// now try to reset the device
if (FAILED(hr = g_pD3DDevice->Reset(&g_d3dpp))) {
return hr;
} else {
// This is a common function we use to restore all hardware
// resources/state
RestoreContextResources();
// we have acquired the device
g_bDeviceLost = false;
}
}
}
return hr;
}
HRESULT InitCUFFT() {
// You can only call CUDA D3D9 device has been bound to the CUDA
// context, otherwise it will not work
g_hvfield = (cData *)malloc(sizeof(cData) * DS);
memset(g_hvfield, 0, sizeof(cData) * DS);
// Allocate and initialize device data
cudaMallocPitch((void **)&g_dvfield, &g_tPitch, sizeof(cData) * DIM, DIM);
cudaMemcpy(g_dvfield, g_hvfield, sizeof(cData) * DS, cudaMemcpyHostToDevice);
// Temporary complex velocity field data
cudaMalloc((void **)&g_vxfield, sizeof(cData) * PDS);
cudaMalloc((void **)&g_vyfield, sizeof(cData) * PDS);
setupTexture(DIM, DIM);
// Create particle array
g_particles = (cData *)malloc(sizeof(cData) * DS);
memset(g_particles, 0, sizeof(cData) * DS);
initParticles(g_particles, DIM, DIM);
// Create CUFFT transform plan configuration
cufftPlan2d(&g_planr2c, DIM, DIM, CUFFT_R2C);
cufftPlan2d(&g_planc2r, DIM, DIM, CUFFT_C2R);
return S_OK;
}
HRESULT Render(void) {
HRESULT hr = S_OK;
// Normal case where CUDA Device is not lost
if (!g_bDeviceLost) {
sdkStartTimer(&timer);
advectVelocity(g_dvfield, (float *)g_vxfield, (float *)g_vyfield, DIM,
RPADW, DIM, DT, g_tPitch);
{
// Forward FFT
cufftExecR2C(g_planr2c, (cufftReal *)g_vxfield,
(cufftComplex *)g_vxfield);
cufftExecR2C(g_planr2c, (cufftReal *)g_vyfield,
(cufftComplex *)g_vyfield);
diffuseProject(g_vxfield, g_vyfield, CPADW, DIM, DT, VIS, g_tPitch);
// Inverse FFT
cufftExecC2R(g_planc2r, (cufftComplex *)g_vxfield,
(cufftReal *)g_vxfield);
cufftExecC2R(g_planc2r, (cufftComplex *)g_vyfield,
(cufftReal *)g_vyfield);
}
updateVelocity(g_dvfield, (float *)g_vxfield, (float *)g_vyfield, DIM,
RPADW, DIM, g_tPitch);
// Map D3D9 vertex buffer to CUDA
{
size_t num_bytes;
checkCudaErrors(cudaGraphicsMapResources(1, &cuda_VB_resource, 0));
getLastCudaError("cudaGraphicsMapResources failed");
// This gets a pointer from the Vertex Buffer
checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
(void **)&g_mparticles, &num_bytes, cuda_VB_resource));
getLastCudaError("cudaGraphicsResourceGetMappedPointer failed");
advectParticles(g_mparticles, g_dvfield, DIM, DIM, DT, g_tPitch);
// Unmap vertex buffer
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_VB_resource, 0));
getLastCudaError("cudaGraphicsUnmapResource failed");
}
g_pD3DDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0, 0, 0), 1.0f,
0);
g_pD3DDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
g_pD3DDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
g_pD3DDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
g_pD3DDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
g_pD3DDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE);
float size = 16;
g_pD3DDevice->SetRenderState(D3DRS_POINTSIZE, *((DWORD *)&size));
g_pD3DDevice->SetTexture(0, g_pTexture);
if (SUCCEEDED(g_pD3DDevice->BeginScene())) {
// Draw particles
g_pD3DDevice->SetStreamSource(0, g_pVB, 0, sizeof(Vertex));
g_pD3DDevice->SetFVF(D3DFVF_CUSTOMVERTEX);
g_pD3DDevice->DrawPrimitive(D3DPT_POINTLIST, 0, DS);
g_pD3DDevice->EndScene();
}
// Finish timing before swap buffers to avoid refresh sync
sdkStopTimer(&timer);
// Present the backbuffer contents to the display
hr = g_pD3DDevice->Present(NULL, NULL, NULL, NULL);
if (hr == D3DERR_DEVICELOST) {
fprintf(stderr, "drawScene Present = %08x detected D3D DeviceLost\n", hr);
g_bDeviceLost = true;
FreeVertexBuffer();
}
fpsCount++;
if (fpsCount == fpsLimit) {
char fps[256];
float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
sprintf(fps, "CUDA/D3D9 Stable Fluids (%d x %d): %3.1f fps", DIM, DIM,
ifps);
SetWindowText(hWnd, fps);
fpsCount = 0;
fpsLimit = (int)MAX(ifps, 1.f);
sdkResetTimer(&timer);
}
} else {
// Begin code to handle case where the D3D9 device is lost
if (FAILED(hr = DeviceLostHandler())) {
fprintf(stderr, "DeviceLostHandler FAILED returned %08x\n", hr);
return hr;
}
fprintf(stderr, "Render DeviceLost handler\n");
// test the cooperative level to see if it's okay
// to render
if (FAILED(hr = g_pD3DDevice->TestCooperativeLevel())) {
fprintf(stderr,
"TestCooperativeLevel = %08x failed, will attempt to reset\n",
hr);
// if the device was truly lost, (i.e., a fullscreen device just lost
// focus), wait
// until we g_et it back
if (hr == D3DERR_DEVICELOST) {
fprintf(
stderr,
"TestCooperativeLevel = %08x DeviceLost, will retry next call\n",
hr);
return S_OK;
}
// eventually, we will g_et this return value,
// indicating that we can now reset the device
if (hr == D3DERR_DEVICENOTRESET) {
fprintf(stderr,
"TestCooperativeLevel = %08x will try to RESET the device\n",
hr);
// if we are windowed, read the desktop mode and use the same format for
// the back buffer; this effectively turns off color conversion
if (g_bWindowed) {
g_pD3D->GetAdapterDisplayModeEx(g_iAdapter, &g_d3ddm, NULL);
g_d3dpp.BackBufferFormat = g_d3ddm.Format;
}
// now try to reset the device
if (FAILED(hr = g_pD3DDevice->Reset(&g_d3dpp))) {
fprintf(stderr, "TestCooperativeLevel = %08x RESET device FAILED\n",
hr);
return hr;
} else {
fprintf(stderr, "TestCooperativeLevel = %08x RESET device SUCCESS!\n",
hr);
// Reinitialize D3D9 resources, CUDA resources/contexts
RestoreContextResources();
fprintf(stderr, "TestCooperativeLevel = %08x INIT device SUCCESS!\n",
hr);
// we have acquired the device
g_bDeviceLost = false;
}
}
}
}
return hr;
}
// very simple von neumann middle-square prng. can't use rand() in -qatest
// mode because its implementation varies across platforms which makes testing
// for consistency in the important parts of this program difficult.
float myrand(void) {
static int seed = 72191;
char sq[22];
if (ref_file) {
seed *= seed;
sprintf(sq, "%010d", seed);
// pull the middle 5 digits out of sq
sq[8] = 0;
seed = atoi(&sq[3]);
return seed / 99999.f;
} else {
return rand() / (float)RAND_MAX;
}
}
void initParticles(cData *p, int dx, int dy) {
int i, j;
for (i = 0; i < dy; i++) {
for (j = 0; j < dx; j++) {
p[i * dx + j].x = (j + 0.5f + (myrand() - 0.5f)) / dx;
p[i * dx + j].y = (i + 0.5f + (myrand() - 0.5f)) / dy;
}
}
}
int main(int argc, char **argv) {
pArgc = &argc;
pArgv = argv;
printf("%s Starting...\n\n", argv[0]);
printf(
"NOTE: The CUDA Samples are not meant for performance measurements. "
"Results may vary when GPU Boost is enabled.\n\n");
sdkCreateTimer(&timer);
sdkResetTimer(&timer);
// command line options
// automated build testing harness
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
getCmdLineArgumentString(argc, (const char **)argv, "file", &ref_file);
}
HINSTANCE hInst = GetModuleHandle(NULL);
// Register the window class
WNDCLASSEX wc = {sizeof(WNDCLASSEX), CS_CLASSDC, MsgProc, 0L, 0L,
GetModuleHandle(NULL), NULL, NULL, NULL, NULL,
"fluidsD3D9", NULL};
RegisterClassEx(&wc);
// Create the application's window
int xBorder = ::GetSystemMetrics(SM_CXSIZEFRAME);
int yCaption = ::GetSystemMetrics(SM_CYCAPTION);
int yBorder = ::GetSystemMetrics(SM_CYSIZEFRAME);
hWnd = CreateWindow("fluidsD3D9", "CUDA/D3D9 Stable Fluids",
WS_OVERLAPPEDWINDOW, 100, 100, wWidth + 2 * xBorder,
wHeight + 2 * yBorder + yCaption, NULL, NULL,
wc.hInstance, NULL);
if (SUCCEEDED(InitD3D9(hWnd)) && SUCCEEDED(InitCUDA()) &&
SUCCEEDED(InitD3D9RenderState()) && SUCCEEDED(InitCUFFT()) &&
SUCCEEDED(InitVertexBuffer()) && SUCCEEDED(InitPointTexture())) {
ShowWindow(hWnd, SW_SHOWDEFAULT);
UpdateWindow(hWnd);
// Rendering loop
MSG msg;
ZeroMemory(&msg, sizeof(msg));
while (msg.message != WM_QUIT) {
if (PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
} else {
Render();
if (ref_file) {
for (int count = 0; count < g_iFrameToCompare; count++) {
// add in a little force so the automated testing is interesing.
int x = wWidth / (count + 1);
int y = wHeight / (count + 1);
float fx = (x / (float)wWidth);
float fy = (y / (float)wHeight);
int nx = (int)(fx * DIM);
int ny = (int)(fy * DIM);
int ddx = 35;
int ddy = 35;
fx = ddx / (float)wWidth;
fy = ddy / (float)wHeight;
int spy = ny - FR;
int spx = nx - FR;
addForces(g_dvfield, DIM, DIM, spx, spy, FORCE * DT * fx,
FORCE * DT * fy, FR, g_tPitch);
// g_bQAAddTestForce = false; // only add it once
Render();
}
const char *cur_image_path = "qatest_fluidsD3D9.ppm";
// Save a reference of our current test run image
CheckRenderD3D9::BackbufferToPPM(g_pD3DDevice, cur_image_path);
// compare to official reference image, printing PASS or FAIL.
g_bPassed = CheckRenderD3D9::PPMvsPPM(cur_image_path, ref_file,
argv[0], MAX_EPSILON, 0.30f);
PostQuitMessage(0);
}
}
}
}
UnregisterClass("fluidsD3D9", wc.hInstance);
//
// and exit
//
printf("> %s running on %s exiting...\n", SDK_name, device_name);
exit(g_bPassed ? EXIT_SUCCESS : EXIT_FAILURE);
}

View File

@ -1,333 +0,0 @@
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <builtin_types.h>
#include <cufft.h>
#include <cuda_runtime.h>
#include <helper_cuda.h>
#include "fluidsD3D9_kernels.h"
// Texture object for reading velocity field
cudaTextureObject_t texObj;
static cudaArray *array = NULL;
void setupTexture(int x, int y) {
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float2>();
cudaMallocArray(&array, &desc, y, x);
getLastCudaError("cudaMalloc failed");
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = array;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = false;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeWrap;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&texObj, &texRes, &texDescr, NULL));
}
void updateTexture(cData *data, size_t wib, size_t h, size_t pitch) {
checkCudaErrors(cudaMemcpy2DToArray(array, 0, 0, data, pitch, wib, h,
cudaMemcpyDeviceToDevice));
}
void deleteTexture(void) {
checkCudaErrors(cudaDestroyTextureObject(texObj));
checkCudaErrors(cudaFreeArray(array));
}
// Note that these kernels are designed to work with arbitrary
// domain sizes, not just domains that are multiples of the tile
// size. Therefore, we have extra code that checks to make sure
// a given thread location falls within the domain boundaries in
// both X and Y. Also, the domain is covered by looping over
// multiple elements in the Y direction, while there is a one-to-one
// mapping between threads in X and the tile size in X.
// Nolan Goodnight 9/22/06
// This method adds constant force vectors to the velocity field
// stored in 'v' according to v(x,t+1) = v(x,t) + dt * f.
__global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy,
float fx, float fy, int r, size_t pitch) {
int tx = threadIdx.x;
int ty = threadIdx.y;
cData *fj = (cData *)((char *)v + (ty + spy) * pitch) + tx + spx;
cData vterm = *fj;
tx -= r;
ty -= r;
float s = 1.f / (1.f + tx * tx * tx * tx + ty * ty * ty * ty);
vterm.x += s * fx;
vterm.y += s * fy;
*fj = vterm;
}
// This method performs the velocity advection step, where we
// trace velocity vectors back in time to update each grid cell.
// That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear
// interpolation in the velocity space.
__global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, float dt, int lb,
cudaTextureObject_t texObject) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
cData vterm, ploc;
float vxterm, vyterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * pdx + gtidx;
vterm = tex2D<cData>(texObject, (float)gtidx, (float)fi);
ploc.x = (gtidx + 0.5f) - (dt * vterm.x * dx);
ploc.y = (fi + 0.5f) - (dt * vterm.y * dy);
vterm = tex2D<cData>(texObject, ploc.x, ploc.y);
vxterm = vterm.x;
vyterm = vterm.y;
vx[fj] = vxterm;
vy[fj] = vyterm;
}
}
}
}
// This method performs velocity diffusion and forces mass conservation
// in the frequency domain. The inputs 'vx' and 'vy' are complex-valued
// arrays holding the Fourier coefficients of the velocity field in
// X and Y. Diffusion in this space takes a simple form described as:
// v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity,
// and k is the wavenumber. The projection step forces the Fourier
// velocity vectors to be orthogonal to the vectors for each
// wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2.
__global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt,
float visc, int lb) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
cData xterm, yterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * dx + gtidx;
xterm = vx[fj];
yterm = vy[fj];
// Compute the index of the wavenumber based on the
// data order produced by a standard NN FFT.
int iix = gtidx;
int iiy = (fi > dy / 2) ? (fi - (dy)) : fi;
// Velocity diffusion
float kk = (float)(iix * iix + iiy * iiy); // k^2
float diff = 1.f / (1.f + visc * dt * kk);
xterm.x *= diff;
xterm.y *= diff;
yterm.x *= diff;
yterm.y *= diff;
// Velocity projection
if (kk > 0.f) {
float rkk = 1.f / kk;
// Real portion of velocity projection
float rkp = (iix * xterm.x + iiy * yterm.x);
// Imaginary portion of velocity projection
float ikp = (iix * xterm.y + iiy * yterm.y);
xterm.x -= rkk * rkp * iix;
xterm.y -= rkk * ikp * iix;
yterm.x -= rkk * rkp * iiy;
yterm.y -= rkk * ikp * iiy;
}
vx[fj] = xterm;
vy[fj] = yterm;
}
}
}
}
// This method updates the velocity field 'v' using the two complex
// arrays from the previous step: 'vx' and 'vy'. Here we scale the
// real components by 1/(dx*dy) to account for an unnormalized FFT.
__global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, int lb, size_t pitch) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
float vxterm, vyterm;
cData nvterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fjr = fi * pdx + gtidx;
vxterm = vx[fjr];
vyterm = vy[fjr];
// Normalize the result of the inverse FFT
float scale = 1.f / (dx * dy);
nvterm.x = vxterm * scale;
nvterm.y = vyterm * scale;
cData *fj = (cData *)((char *)v + fi * pitch) + gtidx;
*fj = nvterm;
}
} // If this thread is inside the domain in Y
} // If this thread is inside the domain in X
}
// This method updates the particles by moving particle positions
// according to the velocity field and time step. That is, for each
// particle: p(t+1) = p(t) + dt * v(p(t)).
__global__ void advectParticles_k(Vertex *part, cData *v, int dx, int dy,
float dt, int lb, size_t pitch) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
// gtidx is the domain location in x for this thread
cData vterm;
Vertex pterm;
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * dx + gtidx;
pterm = part[fj];
int xvi = ((int)(pterm.x * dx));
int yvi = ((int)(pterm.y * dy));
vterm = *((cData *)((char *)v + yvi * pitch) + xvi);
pterm.x += dt * vterm.x;
pterm.x = pterm.x - (int)pterm.x;
pterm.x += 1.f;
pterm.x = pterm.x - (int)pterm.x;
pterm.y += dt * vterm.y;
pterm.y = pterm.y - (int)pterm.y;
pterm.y += 1.f;
pterm.y = pterm.y - (int)pterm.y;
part[fj] = pterm;
}
} // If this thread is inside the domain in Y
} // If this thread is inside the domain in X
}
extern "C" void addForces(cData *v, int dx, int dy, int spx, int spy, float fx,
float fy, int r, size_t tPitch) {
dim3 tids(2 * r + 1, 2 * r + 1);
addForces_k<<<1, tids>>>(v, dx, dy, spx, spy, fx, fy, r, tPitch);
getLastCudaError("addForces_k failed.");
}
extern "C" void advectVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy, float dt, size_t tPitch) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
updateTexture(v, DIM * sizeof(cData), DIM, tPitch);
advectVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, dt, TILEY / TIDSY,
texObj);
getLastCudaError("advectVelocity_k failed.");
}
extern "C" void diffuseProject(cData *vx, cData *vy, int dx, int dy, float dt,
float visc, size_t tPitch) {
// Forward FFT
// cufftExecR2C(planr2c, (cufftReal*)vx, (cufftComplex*)vx);
// cufftExecR2C(planr2c, (cufftReal*)vy, (cufftComplex*)vy);
uint3 grid = make_uint3((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1), 1);
uint3 tids = make_uint3(TIDSX, TIDSY, 1);
diffuseProject_k<<<grid, tids>>>(vx, vy, dx, dy, dt, visc, TILEY / TIDSY);
getLastCudaError("diffuseProject_k failed.");
// Inverse FFT
// cufftExecC2R(planc2r, (cufftComplex*)vx, (cufftReal*)vx);
// cufftExecC2R(planc2r, (cufftComplex*)vy, (cufftReal*)vy);
}
extern "C" void updateVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy, size_t tPitch) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
updateVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, TILEY / TIDSY,
tPitch);
getLastCudaError("updateVelocity_k failed.");
}
extern "C" void advectParticles(Vertex *p, cData *v, int dx, int dy, float dt,
size_t tPitch) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
advectParticles_k<<<grid, tids>>>(p, v, dx, dy, dt, TILEY / TIDSY, tPitch);
getLastCudaError("advectParticles_k failed.");
}

View File

@ -1,109 +0,0 @@
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __STABLEFLUIDS_KERNELS_H_
#define __STABLEFLUIDS_KERNELS_H_
#define DIM 512 // Square size of solver domain
#define DS (DIM * DIM) // Total domain size
#define CPADW (DIM / 2 + 1) // Padded width for real->complex in-place FFT
#define RPADW \
(2 * (DIM / 2 + 1)) // Padded width for real->complex in-place FFT
#define PDS (DIM * CPADW) // Padded total domain size
#define DT 0.09f // Delta T for interative solver
#define VIS 0.0025f // Viscosity constant
#define FORCE (5.8f * DIM) // Force scale factor
#define FR 4 // Force update radius
#define TILEX 64 // Tile width
#define TILEY 64 // Tile height
#define TIDSX 64 // Tids in X
#define TIDSY 4 // Tids in Y
typedef unsigned long DWORD;
typedef struct vertex {
float x, y, z;
DWORD c;
} Vertex;
// Vector data type used to velocity and force fields
typedef float2 cData;
extern "C" void setupTexture(int x, int y);
extern "C" void updateTexture(cData *data, size_t w, size_t h, size_t pitch);
extern "C" void deleteTexture(void);
// This method adds constant force vectors to the velocity field
// stored in 'v' according to v(x,t+1) = v(x,t) + dt * f.
__global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy,
float fx, float fy, int r, size_t pitch);
// This method performs the velocity advection step, where we
// trace velocity vectors back in time to update each grid cell.
// That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear
// interpolation in the velocity space.
__global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, float dt, int lb,
cudaTextureObject_t tex);
// This method performs velocity diffusion and forces mass conservation
// in the frequency domain. The inputs 'vx' and 'vy' are complex-valued
// arrays holding the Fourier coefficients of the velocity field in
// X and Y. Diffusion in this space takes a simple form described as:
// v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity,
// and k is the wavenumber. The projection step forces the Fourier
// velocity vectors to be orthogonal to the wave wave vectors for each
// wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2.
__global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt,
float visc, int lb);
// This method updates the velocity field 'v' using the two complex
// arrays from the previous step: 'vx' and 'vy'. Here we scale the
// real components by 1/(dx*dy) to account for an unnormalized FFT.
__global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, int lb, size_t pitch);
// This method updates the particles by moving particle positions
// according to the velocity field and time step. That is, for each
// particle: p(t+1) = p(t) + dt * v(p(t)).
__global__ void advectParticles_k(Vertex *part, cData *v, int dx, int dy,
float dt, int lb, size_t pitch);
extern "C" void addForces(cData *v, int dx, int dy, int spx, int spy, float fx,
float fy, int r, size_t tPitch);
extern "C" void advectVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy, float dt, size_t tPitch);
extern "C" void diffuseProject(cData *vx, cData *vy, int dx, int dy, float dt,
float visc, size_t tPitch);
extern "C" void updateVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy, size_t tPitch);
extern "C" void advectParticles(Vertex *p, cData *v, int dx, int dy, float dt,
size_t tPitch);
#endif