Remove cppIntegration

This commit is contained in:
Rob Armstrong 2024-12-11 19:11:40 +00:00
parent ff264a798f
commit 9d8f61431e
11 changed files with 3 additions and 881 deletions

View File

@ -4,7 +4,9 @@
* Removed the following outdated samples:
* `0_Introduction`
* `c++11_cuda` demonstrating CUDA and C++ 11 interoperability (reason: obsolete)
* `concurrentKernels.cu` demonstrating the ability to run multiple kernels simultaneously (reason: obsolete)
* `concurrentKernels` demonstrating the ability to run multiple kernels simultaneously (reason: obsolete)
* `cppIntegration` demonstrating calling between .cu and .cpp files (reason: obsolete)
### CUDA 12.5

View File

@ -1,18 +0,0 @@
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**",
"${workspaceFolder}/../../../Common"
],
"defines": [],
"compilerPath": "/usr/local/cuda/bin/nvcc",
"cStandard": "gnu17",
"cppStandard": "gnu++14",
"intelliSenseMode": "linux-gcc-x64",
"configurationProvider": "ms-vscode.makefile-tools"
}
],
"version": 4
}

View File

@ -1,7 +0,0 @@
{
"recommendations": [
"nvidia.nsight-vscode-edition",
"ms-vscode.cpptools",
"ms-vscode.makefile-tools"
]
}

View File

@ -1,10 +0,0 @@
{
"configurations": [
{
"name": "CUDA C++: Launch",
"type": "cuda-gdb",
"request": "launch",
"program": "${workspaceFolder}/cppIntegration"
}
]
}

View File

@ -1,15 +0,0 @@
{
"version": "2.0.0",
"tasks": [
{
"label": "sample",
"type": "shell",
"command": "make dbg=1",
"problemMatcher": ["$nvcc"],
"group": {
"kind": "build",
"isDefault": true
}
}
]
}

View File

@ -1,363 +0,0 @@
################################################################################
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
#
# Makefile project only supported on Mac OS X and Linux Platforms)
#
################################################################################
# Location of the CUDA Toolkit
CUDA_PATH ?= /usr/local/cuda
##############################
# start deprecated interface #
##############################
ifeq ($(x86_64),1)
$(info WARNING - x86_64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=x86_64 instead)
TARGET_ARCH ?= x86_64
endif
ifeq ($(ARMv7),1)
$(info WARNING - ARMv7 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=armv7l instead)
TARGET_ARCH ?= armv7l
endif
ifeq ($(aarch64),1)
$(info WARNING - aarch64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=aarch64 instead)
TARGET_ARCH ?= aarch64
endif
ifeq ($(ppc64le),1)
$(info WARNING - ppc64le variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=ppc64le instead)
TARGET_ARCH ?= ppc64le
endif
ifneq ($(GCC),)
$(info WARNING - GCC variable has been deprecated)
$(info WARNING - please use HOST_COMPILER=$(GCC) instead)
HOST_COMPILER ?= $(GCC)
endif
ifneq ($(abi),)
$(error ERROR - abi variable has been removed)
endif
############################
# end deprecated interface #
############################
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
endif
else
TARGET_SIZE := $(shell getconf LONG_BIT)
endif
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux 2>/dev/null))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
# When on native aarch64 system with userspace of 32-bit, change TARGET_ARCH to armv7l
ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_SIZE),aarch64-aarch64-32)
TARGET_ARCH = armv7l
endif
# operating system
HOST_OS := $(shell uname -s 2>/dev/null | tr "[:upper:]" "[:lower:]")
TARGET_OS ?= $(HOST_OS)
ifeq (,$(filter $(TARGET_OS),linux darwin qnx android))
$(error ERROR - unsupported value $(TARGET_OS) for TARGET_OS!)
endif
# host compiler
ifdef HOST_COMPILER
CUSTOM_HOST_COMPILER = 1
endif
ifeq ($(TARGET_OS),darwin)
ifeq ($(shell expr `xcodebuild -version | grep -i xcode | awk '{print $$2}' | cut -d'.' -f1` \>= 5),1)
HOST_COMPILER ?= clang++
endif
else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(HOST_ARCH)-$(TARGET_ARCH),x86_64-armv7l)
ifeq ($(TARGET_OS),linux)
HOST_COMPILER ?= arm-linux-gnueabihf-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/arm-unknown-nto-qnx6.6.0eabi-g++
else ifeq ($(TARGET_OS),android)
HOST_COMPILER ?= arm-linux-androideabi-g++
endif
else ifeq ($(TARGET_ARCH),aarch64)
ifeq ($(TARGET_OS), linux)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/q++
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
endif
HOST_COMPILER ?= g++
NVCC := $(CUDA_PATH)/bin/nvcc -ccbin $(HOST_COMPILER)
# internal flags
NVCCFLAGS := -m${TARGET_SIZE}
CCFLAGS :=
LDFLAGS :=
# build flags
# Link flag for customized HOST_COMPILER with gcc realpath
GCC_PATH := $(shell which gcc)
ifeq ($(CUSTOM_HOST_COMPILER),1)
ifneq ($(filter /%,$(HOST_COMPILER)),)
ifneq ($(findstring gcc,$(HOST_COMPILER)),)
ifneq ($(GCC_PATH),$(HOST_COMPILER))
LDFLAGS += -lstdc++
endif
endif
endif
endif
ifeq ($(TARGET_OS),darwin)
LDFLAGS += -rpath $(CUDA_PATH)/lib
CCFLAGS += -arch $(HOST_ARCH)
else ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_OS),x86_64-armv7l-linux)
LDFLAGS += --dynamic-linker=/lib/ld-linux-armhf.so.3
CCFLAGS += -mfloat-abi=hard
else ifeq ($(TARGET_OS),android)
LDFLAGS += -pie
CCFLAGS += -fpie -fpic -fexceptions
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/arm-linux-gnueabihf
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include/libdrm
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
NVCCFLAGS += -D_QNX_SOURCE
NVCCFLAGS += --qpp-config 8.3.0,gcc_ntoaarch64le
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -L/usr/lib/aarch64-qnx-gnu
CCFLAGS += "-Wl\,-rpath-link\,/usr/lib/aarch64-qnx-gnu"
ifdef TARGET_OVERRIDE
LDFLAGS += -lslog2
endif
ifneq ($(TARGET_FS),)
LDFLAGS += -L$(TARGET_FS)/usr/lib
CCFLAGS += "-Wl\,-rpath-link\,$(TARGET_FS)/usr/lib"
LDFLAGS += -L$(TARGET_FS)/usr/libnvidia
CCFLAGS += "-Wl\,-rpath-link\,$(TARGET_FS)/usr/libnvidia"
CCFLAGS += -I$(TARGET_FS)/../include
endif
endif
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
# Install directory of different arch
CUDA_INSTALL_TARGET_DIR :=
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-qnx)
CUDA_INSTALL_TARGET_DIR = targets/ARMv7-linux-QNX/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-qnx/
else ifeq ($(TARGET_ARCH),ppc64le)
CUDA_INSTALL_TARGET_DIR = targets/ppc64le-linux/
endif
# Debug build flags
ifeq ($(dbg),1)
NVCCFLAGS += -g -G
BUILD_TYPE := debug
else
BUILD_TYPE := release
endif
ALL_CCFLAGS :=
ALL_CCFLAGS += $(NVCCFLAGS)
ALL_CCFLAGS += $(EXTRA_NVCCFLAGS)
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(CCFLAGS))
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(EXTRA_CCFLAGS))
SAMPLE_ENABLED := 1
ALL_LDFLAGS :=
ALL_LDFLAGS += $(ALL_CCFLAGS)
ALL_LDFLAGS += $(addprefix -Xlinker ,$(LDFLAGS))
ALL_LDFLAGS += $(addprefix -Xlinker ,$(EXTRA_LDFLAGS))
# Common includes and paths for CUDA
INCLUDES := -I../../../Common
LIBRARIES :=
################################################################################
# Gencode arguments
ifeq ($(TARGET_ARCH),$(filter $(TARGET_ARCH),armv7l aarch64 sbsa))
SMS ?= 53 61 70 72 75 80 86 87 90
else
SMS ?= 50 52 60 61 70 75 80 86 89 90
endif
ifeq ($(SMS),)
$(info >>> WARNING - no SM architectures have been specified - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ifeq ($(GENCODE_FLAGS),)
# Generate SASS code for each SM architecture listed in $(SMS)
$(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm)))
# Generate PTX code from the highest SM architecture in $(SMS) to guarantee forward-compatibility
HIGHEST_SM := $(lastword $(sort $(SMS)))
ifneq ($(HIGHEST_SM),)
GENCODE_FLAGS += -gencode arch=compute_$(HIGHEST_SM),code=compute_$(HIGHEST_SM)
endif
endif
ALL_CCFLAGS += --threads 0 --std=c++11
ifeq ($(SAMPLE_ENABLED),0)
EXEC ?= @echo "[@]"
endif
################################################################################
# Target rules
all: build
build: cppIntegration
check.deps:
ifeq ($(SAMPLE_ENABLED),0)
@echo "Sample will be waived due to the above missing dependencies"
else
@echo "Sample is ready - all dependencies have been met"
endif
cppIntegration.o:cppIntegration.cu
$(EXEC) $(NVCC) $(INCLUDES) $(ALL_CCFLAGS) $(GENCODE_FLAGS) -o $@ -c $<
cppIntegration_gold.o:cppIntegration_gold.cpp
$(EXEC) $(NVCC) $(INCLUDES) $(ALL_CCFLAGS) $(GENCODE_FLAGS) -o $@ -c $<
main.o:main.cpp
$(EXEC) $(NVCC) $(INCLUDES) $(ALL_CCFLAGS) $(GENCODE_FLAGS) -o $@ -c $<
cppIntegration: cppIntegration.o cppIntegration_gold.o main.o
$(EXEC) $(NVCC) $(ALL_LDFLAGS) $(GENCODE_FLAGS) -o $@ $+ $(LIBRARIES)
$(EXEC) mkdir -p ../../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
$(EXEC) cp $@ ../../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
run: build
$(EXEC) ./cppIntegration
testrun: build
clean:
rm -f cppIntegration cppIntegration.o cppIntegration_gold.o main.o
rm -rf ../../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)/cppIntegration
clobber: clean

View File

@ -1,72 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE entry SYSTEM "SamplesInfo.dtd">
<entry>
<name>cppIntegration</name>
<cuda_api_list>
<toolkit>cudaMalloc</toolkit>
<toolkit>cudaMemcpy</toolkit>
<toolkit>cudaFree</toolkit>
</cuda_api_list>
<description><![CDATA[This example demonstrates how to integrate CUDA into an existing C++ application, i.e. the CUDA entry point on host side is only a function which is called from C++ code and only the file containing this function is compiled with nvcc. It also demonstrates that vector types can be used from cpp.]]></description>
<devicecompilation>whole</devicecompilation>
<includepaths>
<path>./</path>
<path>../</path>
<path>../../../Common</path>
</includepaths>
<keyconcepts>
<concept level="basic">CPP-CUDA Integration</concept>
</keyconcepts>
<keywords>
</keywords>
<libraries>
</libraries>
<librarypaths>
</librarypaths>
<nsight_eclipse>true</nsight_eclipse>
<primary_file>cppIntegration.cu</primary_file>
<scopes>
<scope>1:CUDA Basic Topics</scope>
</scopes>
<sm-arch>sm50</sm-arch>
<sm-arch>sm52</sm-arch>
<sm-arch>sm53</sm-arch>
<sm-arch>sm60</sm-arch>
<sm-arch>sm61</sm-arch>
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<sm-arch>sm86</sm-arch>
<sm-arch>sm87</sm-arch>
<sm-arch>sm89</sm-arch>
<sm-arch>sm90</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>
<platform>linux</platform>
</env>
<env>
<platform>windows7</platform>
</env>
<env>
<arch>x86_64</arch>
<platform>macosx</platform>
</env>
<env>
<arch>arm</arch>
</env>
<env>
<arch>sbsa</arch>
</env>
<env>
<arch>ppc64le</arch>
<platform>linux</platform>
</env>
</supported_envs>
<supported_sm_architectures>
<include>all</include>
</supported_sm_architectures>
<title>C++ Integration</title>
<type>exe</type>
</entry>

View File

@ -1,70 +0,0 @@
# cppIntegration - C++ Integration
## Description
This example demonstrates how to integrate CUDA into an existing C++ application, i.e. the CUDA entry point on host side is only a function which is called from C++ code and only the file containing this function is compiled with nvcc. It also demonstrates that vector types can be used from cpp.
## Key Concepts
CPP-CUDA Integration
## Supported SM Architectures
[SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows
## Supported CPU Architecture
x86_64, ppc64le, armv7l
## CUDA APIs involved
### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
cudaMalloc, cudaMemcpy, cudaFree
## Prerequisites
Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## Build and Run
### Windows
The Windows samples are built using the Visual Studio IDE. Solution files (.sln) are provided for each supported version of Visual Studio, using the format:
```
*_vs<version>.sln - for Visual Studio <version>
```
Each individual sample has its own set of solution files in its directory:
To build/examine all the samples at once, the complete solution files should be used. To build/examine a single sample, the individual sample solution files should be used.
> **Note:** Some samples require that the Microsoft DirectX SDK (June 2010 or newer) be installed and that the VC++ directory paths are properly set up (**Tools > Options...**). Check DirectX Dependencies section for details."
### Linux
The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **TARGET_ARCH=<arch>** - cross-compile targeting a specific architecture. Allowed architectures are x86_64, ppc64le, armv7l.
By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.<br/>
`$ make TARGET_ARCH=x86_64` <br/> `$ make TARGET_ARCH=ppc64le` <br/> `$ make TARGET_ARCH=armv7l` <br/>
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details.
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`.
```
$ make SMS="50 60"
```
* **HOST_COMPILER=<host_compiler>** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=g++
```
## References (for more details)

View File

@ -1,172 +0,0 @@
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Example of integrating CUDA functions into an existing
* application / framework.
* Host part of the device code.
* Compiled with Cuda compiler.
*/
// System includes
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <assert.h>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
#ifndef MAX
#define MAX(a, b) (a > b ? a : b)
#endif
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
extern "C" void computeGold(char *reference, char *idata,
const unsigned int len);
extern "C" void computeGold2(int2 *reference, int2 *idata,
const unsigned int len);
///////////////////////////////////////////////////////////////////////////////
//! Simple test kernel for device functionality
//! @param g_odata memory to process (in and out)
///////////////////////////////////////////////////////////////////////////////
__global__ void kernel(int *g_data) {
// write data to global memory
const unsigned int tid = threadIdx.x;
int data = g_data[tid];
// use integer arithmetic to process all four bytes with one thread
// this serializes the execution, but is the simplest solutions to avoid
// bank conflicts for this very low number of threads
// in general it is more efficient to process each byte by a separate thread,
// to avoid bank conflicts the access pattern should be
// g_data[4 * wtid + wid], where wtid is the thread id within the half warp
// and wid is the warp id
// see also the programming guide for a more in depth discussion.
g_data[tid] =
((((data << 0) >> 24) - 10) << 24) | ((((data << 8) >> 24) - 10) << 16) |
((((data << 16) >> 24) - 10) << 8) | ((((data << 24) >> 24) - 10) << 0);
}
///////////////////////////////////////////////////////////////////////////////
//! Demonstration that int2 data can be used in the cpp code
//! @param g_odata memory to process (in and out)
///////////////////////////////////////////////////////////////////////////////
__global__ void kernel2(int2 *g_data) {
// write data to global memory
const unsigned int tid = threadIdx.x;
int2 data = g_data[tid];
// use integer arithmetic to process all four bytes with one thread
// this serializes the execution, but is the simplest solutions to avoid
// bank conflicts for this very low number of threads
// in general it is more efficient to process each byte by a separate thread,
// to avoid bank conflicts the access pattern should be
// g_data[4 * wtid + wid], where wtid is the thread id within the half warp
// and wid is the warp id
// see also the programming guide for a more in depth discussion.
g_data[tid].x = data.x - data.y;
}
////////////////////////////////////////////////////////////////////////////////
//! Entry point for Cuda functionality on host side
//! @param argc command line argument count
//! @param argv command line arguments
//! @param data data to process on the device
//! @param len len of \a data
////////////////////////////////////////////////////////////////////////////////
extern "C" bool runTest(const int argc, const char **argv, char *data,
int2 *data_int2, unsigned int len) {
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
const unsigned int num_threads = len / 4;
assert(0 == (len % 4));
const unsigned int mem_size = sizeof(char) * len;
const unsigned int mem_size_int2 = sizeof(int2) * len;
// allocate device memory
char *d_data;
checkCudaErrors(cudaMalloc((void **)&d_data, mem_size));
// copy host memory to device
checkCudaErrors(cudaMemcpy(d_data, data, mem_size, cudaMemcpyHostToDevice));
// allocate device memory for int2 version
int2 *d_data_int2;
checkCudaErrors(cudaMalloc((void **)&d_data_int2, mem_size_int2));
// copy host memory to device
checkCudaErrors(cudaMemcpy(d_data_int2, data_int2, mem_size_int2,
cudaMemcpyHostToDevice));
// setup execution parameters
dim3 grid(1, 1, 1);
dim3 threads(num_threads, 1, 1);
dim3 threads2(len, 1, 1); // more threads needed fir separate int2 version
// execute the kernel
kernel<<<grid, threads>>>((int *)d_data);
kernel2<<<grid, threads2>>>(d_data_int2);
// check if kernel execution generated and error
getLastCudaError("Kernel execution failed");
// compute reference solutions
char *reference = (char *)malloc(mem_size);
computeGold(reference, data, len);
int2 *reference2 = (int2 *)malloc(mem_size_int2);
computeGold2(reference2, data_int2, len);
// copy results from device to host
checkCudaErrors(cudaMemcpy(data, d_data, mem_size, cudaMemcpyDeviceToHost));
checkCudaErrors(cudaMemcpy(data_int2, d_data_int2, mem_size_int2,
cudaMemcpyDeviceToHost));
// check result
bool success = true;
for (unsigned int i = 0; i < len; i++) {
if (reference[i] != data[i] || reference2[i].x != data_int2[i].x ||
reference2[i].y != data_int2[i].y) {
success = false;
}
}
// cleanup memory
checkCudaErrors(cudaFree(d_data));
checkCudaErrors(cudaFree(d_data_int2));
free(reference);
free(reference2);
return success;
}

View File

@ -1,67 +0,0 @@
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Example of integrating CUDA functions into an existing
* application / framework.
* Reference solution computation.
*/
// Required header to support CUDA vector types
#include <vector_types.h>
////////////////////////////////////////////////////////////////////////////////
// export C interface
extern "C" void computeGold(char *reference, char *idata,
const unsigned int len);
extern "C" void computeGold2(int2 *reference, int2 *idata,
const unsigned int len);
////////////////////////////////////////////////////////////////////////////////
//! Compute reference data set
//! Each element is multiplied with the number of threads / array length
//! @param reference reference data, computed but preallocated
//! @param idata input data as provided to device
//! @param len number of elements in reference / idata
////////////////////////////////////////////////////////////////////////////////
void computeGold(char *reference, char *idata, const unsigned int len) {
for (unsigned int i = 0; i < len; ++i) reference[i] = idata[i] - 10;
}
////////////////////////////////////////////////////////////////////////////////
//! Compute reference data set for int2 version
//! Each element is multiplied with the number of threads / array length
//! @param reference reference data, computed but preallocated
//! @param idata input data as provided to device
//! @param len number of elements in reference / idata
////////////////////////////////////////////////////////////////////////////////
void computeGold2(int2 *reference, int2 *idata, const unsigned int len) {
for (unsigned int i = 0; i < len; ++i) {
reference[i].x = idata[i].x - idata[i].y;
reference[i].y = idata[i].y;
}
}

View File

@ -1,86 +0,0 @@
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Example of integrating CUDA functions into an existing
* application / framework.
* CPP code representing the existing application / framework.
* Compiled with default CPP compiler.
*/
// includes, system
#include <iostream>
#include <stdlib.h>
// Required to include CUDA vector types
#include <cuda_runtime.h>
#include <vector_types.h>
#include <helper_cuda.h>
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
extern "C" bool runTest(const int argc, const char **argv, char *data,
int2 *data_int2, unsigned int len);
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
// input data
int len = 16;
// the data has some zero padding at the end so that the size is a multiple of
// four, this simplifies the processing as each thread can process four
// elements (which is necessary to avoid bank conflicts) but no branching is
// necessary to avoid out of bounds reads
char str[] = {82, 111, 118, 118, 121, 42, 97, 121,
124, 118, 110, 56, 10, 10, 10, 10};
// Use int2 showing that CUDA vector types can be used in cpp code
int2 i2[16];
for (int i = 0; i < len; i++) {
i2[i].x = str[i];
i2[i].y = 10;
}
bool bTestResult;
// run the device part of the program
bTestResult = runTest(argc, (const char **)argv, str, i2, len);
std::cout << str << std::endl;
char str_device[16];
for (int i = 0; i < len; i++) {
str_device[i] = (char)(i2[i].x);
}
std::cout << str_device << std::endl;
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}