173 lines
11 KiB
Python

from ariths_gen.wire_components import (
ConstantWireValue0,
Bus
)
from ariths_gen.core.arithmetic_circuits import (
GeneralCircuit
)
from ariths_gen.one_bit_circuits.one_bit_components import (
PGSumLogic,
GreyCell,
BlackCell
)
from ariths_gen.one_bit_circuits.logic_gates import (
XorGate
)
class UnsignedSklanskyAdder(GeneralCircuit):
"""Class representing unsigned Sklansky (or divide-and-conquer) adder (using valency-2 logic gates).
The Sklansky adder belongs to a type of tree (parallel-prefix) adders.
Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation
The main difference between each tree adder lies in the implementation of the part 2).
Along with Kogge-Stone and Brent-Kung it is considered to be a fundamental tree adder architecture.
Sklansky achieves log2(N) stages by computing intermediate prefixes along with the large group prefixes. This comes at the expense
of fanouts that double at each level.
Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation.
For further circuit characteristics see the book CMOS VLSI Design.
The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks.
The 2) part is then composed according to the parallel-prefix adder characteristics.
```
B3 A3 B2 A2 B1 A1 B0 A0
│ │ │ │ │ │ │ │
┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐
│ PG │ C3 │ PG │ C2 │ PG │ C1 │ PG │
│ SUM │◄────┐│ SUM │◄──┐│ SUM │◄──┐│ SUM │◄──0
│ │ ││ │ ││ │ ││ │
└─┬──┬┬┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │└─┬┬┬──┘
│ ││G3P3S3│ │││G2P2S2│ │││G1P1S1│ │││G0P0S0
│ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐
│ │ Parallel-prefix │
│ │ PG logic │
│ └─┬───────┬──────────┬──────────┬────────┘
│ │S3 │S2 │S1 │S0
┌─▼───▼───────▼──────────▼──────────▼────────┐
│ Sum + Cout │
│ logic │
└┬────┬───────┬──────────┬──────────┬────────┘
│ │ │ │ │
▼ ▼ ▼ ▼ ▼
Cout S3 S1 S0 S0
```
Description of the __init__ method.
Args:
a (Bus): First input bus.
b (Bus): Second input bus.
prefix (str, optional): Prefix name of unsigned sa. Defaults to "".
name (str, optional): Name of unsigned sa. Defaults to "u_sa".
"""
def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "u_sa", **kwargs):
self.N = max(a.N, b.N)
super().__init__(inputs=[a, b], prefix=prefix, name=name, out_N=self.N+1, **kwargs)
# Bus sign extension in case buses have different lengths
self.a.bus_extend(N=self.N, prefix=a.prefix)
self.b.bus_extend(N=self.N, prefix=b.prefix)
cin = ConstantWireValue0()
# Lists of list containing all propagate/generate wires
self.propagate_sig = []
self.generate_sig = []
# Cin0 used as a first generate wire for obtaining next carry bits
self.generate_sig.append([cin])
# For each bit pair proceed with three stages of PPAs (Generate PG signals, Prefix computation (PG logic), Computation and connection of outputs)
# NOTE In the implementation below, both the first and third stages are handled by the PG FAs
for i_wire in range(self.N):
# 1st + 3rd stage: Generate PG signals + Computation and connection of outputs
self.add_component(PGSumLogic(self.a.get_wire(i_wire), self.b.get_wire(i_wire), self.generate_sig[i_wire][-1], prefix=self.prefix+"_pg_sum"+str(self.get_instance_num(cls=PGSumLogic))))
self.generate_sig.append([self.get_previous_component().get_generate_wire()])
self.propagate_sig.append([self.get_previous_component().get_propagate_wire()])
self.out.connect(i_wire, self.get_previous_component().get_sum_wire())
if i_wire == self.N-1:
self.add_component(GreyCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][0], self.generate_sig[i_wire][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell))))
self.out.connect(self.N, self.get_previous_component().get_generate_wire())
# 2nd stage: Prefix Computation (PG logic)
# For all bit indexes expect for the last one, proceed with the parralel prefix PG logic
else:
binary_form = bin(i_wire+1)[2:][::-1] # +1 to obtain proper carry bit index (index 0 corresponds to Cin)
index_stages = len(binary_form)
prev_stage_int_value = 0
for stage, value in enumerate(binary_form):
if value == '1':
# Grey cell
if stage == index_stages-1:
if index_stages == 1: # Bit index with only one stage
self.add_component(GreyCell(self.generate_sig[i_wire+1][0], self.propagate_sig[i_wire][0], self.generate_sig[i_wire][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell))))
else: # Bit index contains multiple stages, GC is its last stage
self.add_component(GreyCell(self.get_previous_component().get_generate_wire(), self.get_previous_component().get_propagate_wire(), self.generate_sig[i_wire-prev_stage_int_value][-1], prefix=self.prefix+"_gc"+str(self.get_instance_num(cls=GreyCell))))
# Black cell
else: # If bit index contains more than one stage, every stage except for the last one contains a Black cell
self.add_component(BlackCell(self.generate_sig[i_wire+1][-1], self.propagate_sig[i_wire][-1], self.generate_sig[i_wire-prev_stage_int_value][stage], self.propagate_sig[i_wire-1-prev_stage_int_value][stage], prefix=self.prefix+"_bc"+str(self.get_instance_num(cls=BlackCell))))
self.propagate_sig[i_wire].append(self.get_previous_component().get_propagate_wire())
self.generate_sig[i_wire+1].append(self.get_previous_component().get_generate_wire())
prev_stage_int_value += 2**stage
class SignedSklanskyAdder(UnsignedSklanskyAdder, GeneralCircuit):
"""Class representing signed Sklansky (or divide-and-conquer) adder (using valency-2 logic gates).
The Sklansky adder belongs to a type of tree (parallel-prefix) adders.
Tree adder structure consists of three parts of logic: 1) PG logic generation, 2) Parallel PG logic computation, 3) Final sum and cout computation
The main difference between each tree adder lies in the implementation of the part 2).
Along with Kogge-Stone and Brent-Kung it is considered to be a fundamental tree adder architecture.
Sklansky achieves log2(N) stages by computing intermediate prefixes along with the large group prefixes. This comes at the expense
of fanouts that double at each level.
Main building components are GreyCells and BlackCells that appropriately encapsulate the essential logic used for PG computation.
For further circuit characteristics see the book CMOS VLSI Design.
The implementation performs the 1) and 3) (sum XORs) parts using one bit three input P/G/Sum logic function blocks.
The 2) part is then composed according to the parallel-prefix adder characteristics.
At last XOR gates are used to ensure proper sign extension.
```
B3 A3 B2 A2 B1 A1 B0 A0
│ │ │ │ │ │ │ │
┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐ ┌─▼──▼─┐
│ PG │ C3 │ PG │ C2 │ PG │ C1 │ PG │
│ SUM │◄────┐│ SUM │◄──┐│ SUM │◄──┐│ SUM │◄──0
│ │ ││ │ ││ │ ││ │
└─┬──┬┬┘ │└─┬┬┬──┘ │└─┬┬┬──┘ │└─┬┬┬──┘
│ ││G3P3S3│ │││G2P2S2│ │││G1P1S1│ │││G0P0S0
│ ┌▼▼──────┴──▼▼▼──────┴──▼▼▼──────┴──▼▼▼──┐
│ │ Parallel-prefix │
│ │ PG logic │
│ └─┬───────┬──────────┬──────────┬────────┘
│ │S3 │S2 │S1 │S0
┌─▼───▼───────▼──────────▼──────────▼────────┐
│ Sum + Cout │
│ with sign extension │
└┬────┬───────┬──────────┬──────────┬────────┘
│ │ │ │ │
▼ ▼ ▼ ▼ ▼
Cout S3 S1 S0 S0
```
Description of the __init__ method.
Args:
a (Bus): First input bus.
b (Bus): Second input bus.
prefix (str, optional): Prefix name of signed sa. Defaults to "".
name (str, optional): Name of signed sa. Defaults to "s_sa".
"""
def __init__(self, a: Bus, b: Bus, prefix: str = "", name: str = "s_sa", **kwargs):
super().__init__(a=a, b=b, prefix=prefix, name=name, signed=True, **kwargs)
# Additional XOR gates to ensure correct sign extension in case of sign addition
self.add_component(XorGate(self.a.get_wire(self.N-1), self.b.get_wire(self.N-1), prefix=self.prefix+"_xor"+str(self.get_instance_num(cls=XorGate)), parent_component=self))
self.add_component(XorGate(self.get_previous_component().out, self.get_previous_component(2).get_generate_wire(), prefix=self.prefix+"_xor"+str(self.get_instance_num(cls=XorGate)), parent_component=self))
self.out.connect(self.N, self.get_previous_component().out)