from logic_gates import logic_gate, and_gate, nand_gate, or_gate, nor_gate, xor_gate, xnor_gate, not_gate from wire_components import wire, bus import itertools """ ARITHMETIC CIRCUITS """ class arithmetic_circuit(): def __init__(self): self.components = [] self.circuit_wires = [] self.circuit_gates = [] self.c_data_type = "uint64_t" self.N = 1 def add_component(self, component): self.components.append(component) def get_previous_component(self, number: int = 1): return self.components[-number] def get_component_types(self): return list({type(c): c for c in self.components}.values()) def get_unique_types(self): hier_components = self.components_gates + self.component_types return list({type(c): c for c in hier_components}.values()) def get_gate_types(self): return list({type(g): g for g in self.components_gates}.values()) def get_sum_wire(self): return self.out.get_wire(0) def get_carry_wire(self): return self.out.get_wire(1) def get_circuit_wires(self): self.circuit_wires = [] for component in self.components: if not [item for item in self.circuit_wires if item[1] == component.a.name]: self.circuit_wires.append((component.a, component.a.name, len(self.circuit_wires))) if not [item for item in self.circuit_wires if item[1] == component.b.name]: self.circuit_wires.append((component.b, component.b.name, len(self.circuit_wires))) if not [item for item in self.circuit_wires if item[1] == component.out.name]: self.circuit_wires.append((component.out, component.out.name, len(self.circuit_wires))) # Search for circuit's wire unique index for cgp chromosome generation def get_circuit_wire_index(self, wire: wire): for w in self.circuit_wires: if wire.name.endswith(w[1]): return w[2] # Get list of all gates present in circuit def get_circuit_gates(self): gates = [] for c in self.components: if isinstance(c, logic_gate): gates.append(c) else: gates.extend((c.get_circuit_gates())) return gates # Get list of all wires in circuit along with their index position for cgp chromosome generation def get_cgp_wires(self): self.circuit_wires = [] if isinstance(self.a, bus): [self.circuit_wires.append((w, f"_{w.name}", len(self.circuit_wires))) for w in self.a.bus] [self.circuit_wires.append((w, f"_{w.name}", len(self.circuit_wires))) for w in self.b.bus] else: self.circuit_wires.append((self.a, f"_{self.a.name}", len(self.circuit_wires))) self.circuit_wires.append((self.b, f"_{self.b.name}", len(self.circuit_wires))) if hasattr(self, 'c'): self.circuit_wires.append((self.c, f"_{self.c.name}", len(self.circuit_wires))) for gate in self.circuit_gates: if not [item for item in self.circuit_wires if gate.a.name.endswith(item[1])]: self.circuit_wires.append((gate.a, gate.a.name, len(self.circuit_wires))) if not [item for item in self.circuit_wires if gate.b.name.endswith(item[1])]: self.circuit_wires.append((gate.b, gate.b.name, len(self.circuit_wires))) if not [item for item in self.circuit_wires if gate.out.name.endswith(item[1])]: self.circuit_wires.append((gate.out, gate.out.name, len(self.circuit_wires))) """ C CODE GENERATION """ # FLAT C # @staticmethod def get_includes_c(): return f"#include \n#include \n\n" def get_prototype_c(self): return f"{self.c_data_type} {self.prefix}({self.c_data_type} {self.a.prefix}, {self.c_data_type} {self.b.prefix})" + "{" + "\n" def get_declaration_c_flat(self): return f"{self.a.get_wire_declaration_c()}" + \ f"{self.b.get_wire_declaration_c()}" + \ f"".join([c.get_declaration_c_flat() for c in self.components]) def get_init_c_flat(self): return f"{self.a.get_wire_assign_c()}" + \ f"{self.b.get_wire_assign_c()}" + \ "".join([c.get_assign_c_flat() if isinstance(c, logic_gate) else c.get_init_c_flat() for c in self.components]) def get_function_out_c_flat(self): return "".join([f" {self.out.prefix} |= {o.return_wire_value_c(offset=self.out.bus.index(o))};\n" for o in self.out.bus]) # Generating flat C code representation of circuit def get_c_code_flat(self, file_object): file_object.write(self.get_includes_c()) file_object.write(self.get_prototype_c()) file_object.write(self.out.get_declaration_c()) file_object.write(self.get_declaration_c_flat()+"\n") file_object.write(self.get_init_c_flat()+"\n") file_object.write(self.get_function_out_c_flat()) file_object.write(f" return {self.out.prefix}"+";\n}") file_object.close() # HIERARCHICAL C # def get_function_blocks_c(self): # Add unique 1-bit adder components (ha, fa) self.component_types = self.get_component_types() # Add unique logic gates composing subcomponents self.components_gates = list(itertools.chain.from_iterable([c.get_component_types() for c in self.component_types])) self.component_types = self.get_unique_types() return "".join([c.get_function_block_c() for c in self.component_types]) def get_declaration_c_hier(self): return "".join(self.a.get_wire_declaration_c()) + \ "".join(self.b.get_wire_declaration_c()) + \ "".join([c.out.get_declaration_c() if isinstance(c, logic_gate) else c.out.get_wire_declaration_c() for c in self.components]) def get_init_c_hier(self): return f"{self.a.get_wire_assign_c()}" + \ f"{self.b.get_wire_assign_c()}" + \ "".join([f" {c.out.name} = {c.get_gate_invocation_c()}" if isinstance(c, logic_gate) else c.get_out_invocation_c() for c in self.components]) def get_function_out_c_hier(self): return "".join([f" {self.out.prefix} |= {o.return_wire_value_c(offset=self.out.bus.index(o))};\n" for o in self.out.bus]) def get_circuit_c(self): return f"{self.get_prototype_c()}" + \ f"{self.out.get_declaration_c()}" + \ f"{self.get_declaration_c_hier()}\n" + \ f"{self.get_init_c_hier()}\n" + \ f"{self.get_function_out_c_hier()}" + \ f" return {self.out.prefix}"+";\n}" # Generating hierarchical C code representation of circuit def get_c_code_hier(self, file_object): file_object.write(self.get_includes_c()) file_object.write(self.get_function_blocks_c()) file_object.write(self.get_circuit_c()) file_object.close() """ VERILOG CODE GENERATION """ # FLAT VERILOG # def get_prototype_v(self): return f"module {self.prefix}(input [{self.N-1}:0] {self.a.prefix}, input [{self.N-1}:0] {self.b.prefix}, output [{self.out.N-1}:0] {self.out.prefix});\n" def get_declaration_v_flat(self): return f"{self.a.get_wire_declaration_v()}" + \ f"{self.b.get_wire_declaration_v()}" + \ f"".join([c.get_declaration_v_flat() for c in self.components]) def get_init_v_flat(self): return f"{self.a.get_wire_assign_v()}" + \ f"{self.b.get_wire_assign_v()}" + \ "".join([c.get_assign_v_flat() if isinstance(c, logic_gate) else c.get_init_v_flat() for c in self.components]) + "\n" def get_function_out_v_flat(self): return "".join([f" assign {self.out.prefix}[{self.out.bus.index(o)}] = {o.prefix};\n" for o in self.out.bus]) # Generating flat V code representation of circuit def get_v_code_flat(self, file_object): file_object.write(self.get_prototype_v()) file_object.write(self.get_declaration_v_flat()+"\n") file_object.write(self.get_init_v_flat()) file_object.write(self.get_function_out_v_flat()) file_object.write(f"endmodule") file_object.close() # HIERARCHICAL VERILOG # def get_function_blocks_v(self): # Add unique 1-bit adder components (ha, fa) self.component_types = self.get_component_types() # Add unique logic gates composing subcomponents self.components_gates = list(itertools.chain.from_iterable([c.get_component_types() for c in self.component_types])) self.component_types = self.get_unique_types() return "".join([c.get_function_block_v() for c in self.component_types]) def get_declaration_v_hier(self): return "".join(self.a.get_wire_declaration_v()) + \ "".join(self.b.get_wire_declaration_v()) + \ "".join([c.out.get_declaration_v() if isinstance(c, logic_gate) else c.out.get_wire_declaration_v() for c in self.components]) def get_init_v_hier(self): return f"{self.a.get_wire_assign_v()}" + \ f"{self.b.get_wire_assign_v()}" + \ "".join([f"{c.get_gate_invocation_v()}" if isinstance(c, logic_gate) else c.get_invocation_v() for c in self.components]) def get_function_out_v_hier(self): return "".join([f" assign {self.out.prefix}[{self.out.bus.index(o)}] = {o.name};\n" for o in self.out.bus]) def get_circuit_v(self): return f"{self.get_prototype_v()}" + \ f"{self.get_declaration_v_hier()}\n" + \ f"{self.get_init_v_hier()}\n" + \ f"{self.get_function_out_v_hier()}" + \ f"endmodule" # Generating hierarchical C code representation of circuit def get_v_code_hier(self, file_object): file_object.write(self.get_function_blocks_v()) file_object.write(self.get_circuit_v()) file_object.close() """ CGP CODE GENERATION """ # FLAT CGP # def get_parameters_cgp(self): self.circuit_gates = self.get_circuit_gates() return f"{{1,{len(self.circuit_gates)},2,1,0}}" def get_triplet_cgp(self): self.get_cgp_wires() return "".join([g.get_triplet_cgp(a_index=self.get_circuit_wire_index(g.a), b_index=self.get_circuit_wire_index(g.b)) for g in self.circuit_gates]) def get_output_cgp(self): return "(" + ",".join([str(self.get_circuit_wire_index(o)) for o in self.out.bus[::-1]]) + ")" def get_cgp_code(self, file_object): file_object.write(self.get_parameters_cgp()) file_object.write(self.get_triplet_cgp()) file_object.write(self.get_output_cgp()) file_object.close() """ MULTIPLIER CIRCUITS """ class multiplier_circuit(arithmetic_circuit): def __init__(self): super().__init__() def get_previous_partial_product(self, a_index: int, b_index: int, offset: int = 0): # To get the index of previous row's connecting adder and its generated pp index = ((b_index-2) * (self.N*2)) + ((self.N-1)+2*(a_index+2)) + offset # Get carry wire as input for the last adder in current row if a_index == self.N-1: index = index-2 return self.components[index].get_carry_wire() # Get sum wire as input for current adder else: return self.components[index].get_sum_wire()