Module ariths_gen.multi_bit_circuits.multipliers.array_multiplier
Expand source code
from ariths_gen.wire_components import (
Wire,
ConstantWireValue0,
ConstantWireValue1,
Bus
)
from ariths_gen.core.arithmetic_circuits import (
ArithmeticCircuit,
MultiplierCircuit
)
from ariths_gen.one_bit_circuits.one_bit_components import (
HalfAdder,
FullAdder,
FullAdderPG
)
from ariths_gen.one_bit_circuits.logic_gates import (
AndGate,
NandGate,
OrGate,
NorGate,
XorGate,
XnorGate,
NotGate
)
class UnsignedArrayMultiplier(MultiplierCircuit):
"""Class representing unsigned array multiplier.
Unsigned array multiplier represents N-bit multiplier composed of
many AND gates and half/full adders to calculate partial products and
gradually sum them.
Downside is its rather big area because it is composed of many logic gates.
```
A3B0 A2B0 A1B0 A0B0
│ │ │ │ │ │ │ │
┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐
│AND│ │AND│ │AND│ │AND│
└┬──┘ └┬──┘ └┬──┘ └─┬─┘
A3B1 │ A2B1 │ A1B1 │ A0B1 │
┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │
│AND│ │ │AND│ │ │AND│ │ │AND│ │
└┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │
│ │ │ │ │ │ │ │
┌───▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │
│ │ │ │ │ │ │ │ │
┌───────┤ HA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │
│ │ │ │ │ │ │ │ │ │
│ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │
│ A3B2 │ A2B2 │ A1B2 │ A0B2 │ │
│ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │
│ │AND│ │ │AND│ │ │AND│ │ │AND│ │ │
│ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │
│ │ │ │ │ │ │ │ │ │
┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │
│ │ │ │ │ │ │ │ │ │
┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │
│ │ │ │ │ │ │ │ │ │ │
│ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │
│ A3B3 │ A2B3 │ A1B3 │ A0B3 │ │ │
│ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │ │
│ │AND│ │ │AND│ │ │AND│ │ │AND│ │ │ │
│ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │
│ │ │ │ │ │ │ │ │ │ │
┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │
│ │ │ │ │ │ │ │ │ │ │
┌──────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ │ │ │
│ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
P7 P6 P5 P4 P3 P2 P1 P0
```
Description of the __init__ method.
Args:
a (Bus): First input bus.
b (Bus): Second input bus.
prefix (str, optional): Prefix name of unsigned array multiplier. Defaults to "u_arrmul".
"""
def __init__(self, a: Bus, b: Bus, prefix: str = "u_arrmul"):
super().__init__()
self.N = max(a.N, b.N)
self.prefix = prefix
self.a = Bus(prefix=a.prefix, wires_list=a.bus)
self.b = Bus(prefix=b.prefix, wires_list=b.bus)
# Bus sign extension in case buses have different lengths
self.a.bus_extend(N=self.N, prefix=a.prefix)
self.b.bus_extend(N=self.N, prefix=b.prefix)
# Output wires for multiplication product
self.out = Bus(self.prefix+"_out", self.N*2)
# Gradual generation of partial products
for b_multiplier_index in range(self.N):
for a_multiplicand_index in range(self.N):
# AND gates generation for calculation of partial products
obj_and = AndGate(self.a.get_wire(a_multiplicand_index), self.b.get_wire(b_multiplier_index), prefix=self.prefix+"_and"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_and)
if b_multiplier_index != 0:
previous_product = self.components[a_multiplicand_index + b_multiplier_index].out if b_multiplier_index == 1 else self.get_previous_partial_product(a_index=a_multiplicand_index, b_index=b_multiplier_index)
# HA generation for first 1-bit adder in each row starting from the second one
if a_multiplicand_index == 0:
obj_adder = HalfAdder(self.get_previous_component().out, previous_product, prefix=self.prefix+"_ha"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# Product generation
self.out.connect(b_multiplier_index, obj_adder.get_sum_wire())
# HA generation, last 1-bit adder in second row
elif a_multiplicand_index == self.N-1 and b_multiplier_index == 1:
obj_adder = HalfAdder(self.get_previous_component().out, self.get_previous_component(number=2).get_carry_wire(), prefix=self.prefix+"_ha"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# FA generation
else:
obj_adder = FullAdder(self.get_previous_component().out, previous_product, self.get_previous_component(number=2).get_carry_wire(), prefix=self.prefix+"_fa"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# PRODUCT GENERATION
if a_multiplicand_index == 0 and b_multiplier_index == 0:
self.out.connect(a_multiplicand_index, obj_and.out)
# 1 bit multiplier case
if a_multiplicand_index == self.N-1:
self.out.connect(a_multiplicand_index+1, ConstantWireValue0)
elif b_multiplier_index == self.N-1:
self.out.connect(b_multiplier_index + a_multiplicand_index, obj_adder.get_sum_wire())
if a_multiplicand_index == self.N-1:
self.out.connect(self.out.N-1, obj_adder.get_carry_wire())
class SignedArrayMultiplier(MultiplierCircuit):
"""Class representing signed array multiplier.
Signed array multiplier represents N-bit multiplier composed of
many AND/NAND gates and half/full adders to calculate partial products and
gradually sum them.
Downside is its rather big area because it is composed of many logic gates.
```
A3B0 A2B0 A1B0 A0B0
│ │ │ │ │ │ │ │
┌▼─▼─┐ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐
│NAND│ │AND│ │AND│ │AND│
└┬───┘ └┬──┘ └┬──┘ └─┬─┘
A3B1 │ A2B1 │ A1B1 │ A0B1 │
┌▼─▼─┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │
│NAND│ │ │AND│ │ │AND│ │ │AND│ │
1 └┬───┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │
│ │ │ │ │ │ │ │ │
┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │
│ │ │ │ │ │ │ │ │
┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │
│ │ │ │ │ │ │ │ │ │
│ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │
│ A3B2 │ A2B2 │ A1B2 │ A0B2 │ │
│ ┌▼─▼─┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │
│ │NAND│ │ │AND│ │ │AND│ │ │AND│ │ │
│ └┬───┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │
│ │ │ │ │ │ │ │ │ │
┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │
│ │ │ │ │ │ │ │ │ │
┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │
│ │ │ │ │ │ │ │ │ │ │
│ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │
│ A3B3 │ A2B3 │ A1B3 │ A0B3 │ │ │
│ ┌▼─▼┐ │ ┌▼─▼─┐ │ ┌▼─▼─┐ │ ┌▼─▼─┐ │ │ │
│ │AND│ │ │NAND│ │ │NAND│ │ │NAND│ │ │ │
1 │ └┬──┘ │ └┬───┘ │ └┬───┘ │ └┬───┘ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
┌─▼──┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │
│XOR │◄──┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │
└─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ │ │ │
│ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
P7 P6 P5 P4 P3 P2 P1 P0
```
Description of the __init__ method.
Args:
a (Bus): First input bus.
b (Bus): Second input bus.
prefix (str, optional): Prefix name of signed array multiplier. Defaults to "s_arrmul".
"""
def __init__(self, a: Bus, b: Bus, prefix: str = "s_arrmul"):
super().__init__()
self.c_data_type = "int64_t"
self.N = max(a.N, b.N)
self.prefix = prefix
self.a = Bus(prefix=a.prefix, wires_list=a.bus)
self.b = Bus(prefix=b.prefix, wires_list=b.bus)
# Bus sign extension in case buses have different lengths
self.a.bus_extend(N=self.N, prefix=a.prefix)
self.b.bus_extend(N=self.N, prefix=b.prefix)
# Output wires for multiplication product
self.out = Bus(self.prefix+"_out", self.N*2)
# Gradual generation of partial products
for b_multiplier_index in range(self.N):
for a_multiplicand_index in range(self.N):
# AND and NAND gates generation for calculation of partial products and sign extension
if (b_multiplier_index == self.N-1 and a_multiplicand_index != self.N-1) or (b_multiplier_index != self.N-1 and a_multiplicand_index == self.N-1):
obj_nand = NandGate(self.a.get_wire(a_multiplicand_index), self.b.get_wire(b_multiplier_index), prefix=self.prefix+"_nand"+str(a_multiplicand_index)+"_"+str(b_multiplier_index), parent_component=self)
self.add_component(obj_nand)
else:
obj_and = AndGate(self.a.get_wire(a_multiplicand_index), self.b.get_wire(b_multiplier_index), prefix=self.prefix+"_and"+str(a_multiplicand_index)+"_"+str(b_multiplier_index), parent_component=self)
self.add_component(obj_and)
if b_multiplier_index != 0:
previous_product = self.components[a_multiplicand_index + b_multiplier_index].out if b_multiplier_index == 1 else self.get_previous_partial_product(a_index=a_multiplicand_index, b_index=b_multiplier_index)
# HA generation for first 1-bit adder in each row starting from the second one
if a_multiplicand_index == 0:
obj_adder = HalfAdder(self.get_previous_component().out, previous_product, prefix=self.prefix+"_ha"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# Product generation
self.out.connect(b_multiplier_index, obj_adder.get_sum_wire())
# FA generation
else:
# Constant wire with value 1 used at the last FA in second row (as one of its inputs) for signed multiplication (based on Baugh Wooley algorithm)
if a_multiplicand_index == self.N-1 and b_multiplier_index == 1:
previous_product = ConstantWireValue1()
obj_adder = FullAdder(self.get_previous_component().out, previous_product, self.get_previous_component(number=2).get_carry_wire(), prefix=self.prefix+"_fa"+str(a_multiplicand_index)+"_"+str(b_multiplier_index))
self.add_component(obj_adder)
# PRODUCT GENERATION
if a_multiplicand_index == 0 and b_multiplier_index == 0:
self.out.connect(a_multiplicand_index, obj_and.out)
# 1 bit multiplier case
if a_multiplicand_index == self.N-1:
obj_nor = NorGate(ConstantWireValue1(), self.get_previous_component().out, prefix=self.prefix+"_nor_zero_extend", parent_component=self)
self.add_component(obj_nor)
self.out.connect(a_multiplicand_index+1, obj_nor.out)
elif b_multiplier_index == self.N-1:
self.out.connect(b_multiplier_index + a_multiplicand_index, obj_adder.get_sum_wire())
if a_multiplicand_index == self.N-1:
obj_xor = XorGate(self.get_previous_component().get_carry_wire(), ConstantWireValue1(), prefix=self.prefix+"_xor"+str(a_multiplicand_index+1)+"_"+str(b_multiplier_index), parent_component=self)
self.add_component(obj_xor)
self.out.connect(self.out.N-1, obj_xor.out)
Classes
class SignedArrayMultiplier (a: Bus, b: Bus, prefix: str = 's_arrmul')
-
Class representing signed array multiplier.
Signed array multiplier represents N-bit multiplier composed of many AND/NAND gates and half/full adders to calculate partial products and gradually sum them.
Downside is its rather big area because it is composed of many logic gates.
A3B0 A2B0 A1B0 A0B0 │ │ │ │ │ │ │ │ ┌▼─▼─┐ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐ │NAND│ │AND│ │AND│ │AND│ └┬───┘ └┬──┘ └┬──┘ └─┬─┘ A3B1 │ A2B1 │ A1B1 │ A0B1 │ ┌▼─▼─┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │NAND│ │ │AND│ │ │AND│ │ │AND│ │ 1 └┬───┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ │ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ ┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │ A3B2 │ A2B2 │ A1B2 │ A0B2 │ │ │ ┌▼─▼─┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │ │ │NAND│ │ │AND│ │ │AND│ │ │AND│ │ │ │ └┬───┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ │ │ │ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ │ │ ┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │ │ A3B3 │ A2B3 │ A1B3 │ A0B3 │ │ │ │ ┌▼─▼┐ │ ┌▼─▼─┐ │ ┌▼─▼─┐ │ ┌▼─▼─┐ │ │ │ │ │AND│ │ │NAND│ │ │NAND│ │ │NAND│ │ │ │ 1 │ └┬──┘ │ └┬───┘ │ └┬───┘ │ └┬───┘ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ┌─▼──┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │XOR │◄──┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ │ │ │ │ │ │ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ P7 P6 P5 P4 P3 P2 P1 P0
Description of the init method.
Args
a
:Bus
- First input bus.
b
:Bus
- Second input bus.
prefix
:str
, optional- Prefix name of signed array multiplier. Defaults to "s_arrmul".
Expand source code
class SignedArrayMultiplier(MultiplierCircuit): """Class representing signed array multiplier. Signed array multiplier represents N-bit multiplier composed of many AND/NAND gates and half/full adders to calculate partial products and gradually sum them. Downside is its rather big area because it is composed of many logic gates. ``` A3B0 A2B0 A1B0 A0B0 │ │ │ │ │ │ │ │ ┌▼─▼─┐ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐ │NAND│ │AND│ │AND│ │AND│ └┬───┘ └┬──┘ └┬──┘ └─┬─┘ A3B1 │ A2B1 │ A1B1 │ A0B1 │ ┌▼─▼─┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │NAND│ │ │AND│ │ │AND│ │ │AND│ │ 1 └┬───┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ │ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ ┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │ A3B2 │ A2B2 │ A1B2 │ A0B2 │ │ │ ┌▼─▼─┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │ │ │NAND│ │ │AND│ │ │AND│ │ │AND│ │ │ │ └┬───┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ │ │ │ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ │ │ ┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │ │ A3B3 │ A2B3 │ A1B3 │ A0B3 │ │ │ │ ┌▼─▼┐ │ ┌▼─▼─┐ │ ┌▼─▼─┐ │ ┌▼─▼─┐ │ │ │ │ │AND│ │ │NAND│ │ │NAND│ │ │NAND│ │ │ │ 1 │ └┬──┘ │ └┬───┘ │ └┬───┘ │ └┬───┘ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ┌─▼──┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │XOR │◄──┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ │ │ │ │ │ │ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ P7 P6 P5 P4 P3 P2 P1 P0 ``` Description of the __init__ method. Args: a (Bus): First input bus. b (Bus): Second input bus. prefix (str, optional): Prefix name of signed array multiplier. Defaults to "s_arrmul". """ def __init__(self, a: Bus, b: Bus, prefix: str = "s_arrmul"): super().__init__() self.c_data_type = "int64_t" self.N = max(a.N, b.N) self.prefix = prefix self.a = Bus(prefix=a.prefix, wires_list=a.bus) self.b = Bus(prefix=b.prefix, wires_list=b.bus) # Bus sign extension in case buses have different lengths self.a.bus_extend(N=self.N, prefix=a.prefix) self.b.bus_extend(N=self.N, prefix=b.prefix) # Output wires for multiplication product self.out = Bus(self.prefix+"_out", self.N*2) # Gradual generation of partial products for b_multiplier_index in range(self.N): for a_multiplicand_index in range(self.N): # AND and NAND gates generation for calculation of partial products and sign extension if (b_multiplier_index == self.N-1 and a_multiplicand_index != self.N-1) or (b_multiplier_index != self.N-1 and a_multiplicand_index == self.N-1): obj_nand = NandGate(self.a.get_wire(a_multiplicand_index), self.b.get_wire(b_multiplier_index), prefix=self.prefix+"_nand"+str(a_multiplicand_index)+"_"+str(b_multiplier_index), parent_component=self) self.add_component(obj_nand) else: obj_and = AndGate(self.a.get_wire(a_multiplicand_index), self.b.get_wire(b_multiplier_index), prefix=self.prefix+"_and"+str(a_multiplicand_index)+"_"+str(b_multiplier_index), parent_component=self) self.add_component(obj_and) if b_multiplier_index != 0: previous_product = self.components[a_multiplicand_index + b_multiplier_index].out if b_multiplier_index == 1 else self.get_previous_partial_product(a_index=a_multiplicand_index, b_index=b_multiplier_index) # HA generation for first 1-bit adder in each row starting from the second one if a_multiplicand_index == 0: obj_adder = HalfAdder(self.get_previous_component().out, previous_product, prefix=self.prefix+"_ha"+str(a_multiplicand_index)+"_"+str(b_multiplier_index)) self.add_component(obj_adder) # Product generation self.out.connect(b_multiplier_index, obj_adder.get_sum_wire()) # FA generation else: # Constant wire with value 1 used at the last FA in second row (as one of its inputs) for signed multiplication (based on Baugh Wooley algorithm) if a_multiplicand_index == self.N-1 and b_multiplier_index == 1: previous_product = ConstantWireValue1() obj_adder = FullAdder(self.get_previous_component().out, previous_product, self.get_previous_component(number=2).get_carry_wire(), prefix=self.prefix+"_fa"+str(a_multiplicand_index)+"_"+str(b_multiplier_index)) self.add_component(obj_adder) # PRODUCT GENERATION if a_multiplicand_index == 0 and b_multiplier_index == 0: self.out.connect(a_multiplicand_index, obj_and.out) # 1 bit multiplier case if a_multiplicand_index == self.N-1: obj_nor = NorGate(ConstantWireValue1(), self.get_previous_component().out, prefix=self.prefix+"_nor_zero_extend", parent_component=self) self.add_component(obj_nor) self.out.connect(a_multiplicand_index+1, obj_nor.out) elif b_multiplier_index == self.N-1: self.out.connect(b_multiplier_index + a_multiplicand_index, obj_adder.get_sum_wire()) if a_multiplicand_index == self.N-1: obj_xor = XorGate(self.get_previous_component().get_carry_wire(), ConstantWireValue1(), prefix=self.prefix+"_xor"+str(a_multiplicand_index+1)+"_"+str(b_multiplier_index), parent_component=self) self.add_component(obj_xor) self.out.connect(self.out.N-1, obj_xor.out)
Ancestors
Inherited members
MultiplierCircuit
:add_column_wire
add_column_wires
add_component
get_blif_code_flat
get_blif_code_hier
get_c_code_flat
get_c_code_hier
get_carry_wire
get_cgp_code_flat
get_cgp_wires
get_circuit_blif
get_circuit_c
get_circuit_gates
get_circuit_v
get_circuit_wire_index
get_column_height
get_column_wire
get_component_types
get_declaration_blif
get_declaration_c_flat
get_declaration_c_hier
get_declaration_v_flat
get_declaration_v_hier
get_declarations_c_hier
get_declarations_v_hier
get_function_blif_flat
get_function_block_blif
get_function_block_c
get_function_block_v
get_function_blocks_blif
get_function_blocks_c
get_function_blocks_v
get_function_out_blif
get_function_out_c_flat
get_function_out_c_hier
get_function_out_v_flat
get_function_out_v_hier
get_includes_c
get_init_c_flat
get_init_c_hier
get_init_v_flat
get_init_v_hier
get_instance_num
get_invocation_blif_hier
get_invocations_blif_hier
get_maximum_height
get_multi_bit_components
get_one_bit_components
get_out_invocation_c
get_out_invocation_v
get_outputs_cgp
get_parameters_cgp
get_previous_component
get_previous_partial_product
get_prototype_blif
get_prototype_c
get_prototype_v
get_sum_wire
get_triplets_cgp
get_unique_types
get_v_code_flat
get_v_code_hier
init_column_heights
save_wire_id
update_column_heights
update_column_wires
class UnsignedArrayMultiplier (a: Bus, b: Bus, prefix: str = 'u_arrmul')
-
Class representing unsigned array multiplier.
Unsigned array multiplier represents N-bit multiplier composed of many AND gates and half/full adders to calculate partial products and gradually sum them.
Downside is its rather big area because it is composed of many logic gates.
A3B0 A2B0 A1B0 A0B0 │ │ │ │ │ │ │ │ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐ │AND│ │AND│ │AND│ │AND│ └┬──┘ └┬──┘ └┬──┘ └─┬─┘ A3B1 │ A2B1 │ A1B1 │ A0B1 │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │AND│ │ │AND│ │ │AND│ │ │AND│ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ ┌───▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ ┌───────┤ HA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │ A3B2 │ A2B2 │ A1B2 │ A0B2 │ │ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │ │ │AND│ │ │AND│ │ │AND│ │ │AND│ │ │ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ │ │ │ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ │ │ ┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │ │ A3B3 │ A2B3 │ A1B3 │ A0B3 │ │ │ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │ │ │ │AND│ │ │AND│ │ │AND│ │ │AND│ │ │ │ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ┌──────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ │ │ │ │ │ │ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ P7 P6 P5 P4 P3 P2 P1 P0
Description of the init method.
Args
a
:Bus
- First input bus.
b
:Bus
- Second input bus.
prefix
:str
, optional- Prefix name of unsigned array multiplier. Defaults to "u_arrmul".
Expand source code
class UnsignedArrayMultiplier(MultiplierCircuit): """Class representing unsigned array multiplier. Unsigned array multiplier represents N-bit multiplier composed of many AND gates and half/full adders to calculate partial products and gradually sum them. Downside is its rather big area because it is composed of many logic gates. ``` A3B0 A2B0 A1B0 A0B0 │ │ │ │ │ │ │ │ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐ ┌▼─▼┐ │AND│ │AND│ │AND│ │AND│ └┬──┘ └┬──┘ └┬──┘ └─┬─┘ A3B1 │ A2B1 │ A1B1 │ A0B1 │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │AND│ │ │AND│ │ │AND│ │ │AND│ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ ┌───▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ ┌───────┤ HA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │ A3B2 │ A2B2 │ A1B2 │ A0B2 │ │ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │ │ │AND│ │ │AND│ │ │AND│ │ │AND│ │ │ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ │ │ │ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ │ │ ┌───────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ └┬───┘ └┬───┘ └┬───┘ └─┬──┘ │ │ │ A3B3 │ A2B3 │ A1B3 │ A0B3 │ │ │ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ ┌▼─▼┐ │ │ │ │ │AND│ │ │AND│ │ │AND│ │ │AND│ │ │ │ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ └┬──┘ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ ┌▼──▼┐ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ┌──────┤ FA │◄──┤ FA │◄──┤ FA │◄──┤ HA │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ └─┬──┘ └─┬──┘ └─┬──┘ └─┬──┘ │ │ │ │ │ │ │ │ │ │ │ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ P7 P6 P5 P4 P3 P2 P1 P0 ``` Description of the __init__ method. Args: a (Bus): First input bus. b (Bus): Second input bus. prefix (str, optional): Prefix name of unsigned array multiplier. Defaults to "u_arrmul". """ def __init__(self, a: Bus, b: Bus, prefix: str = "u_arrmul"): super().__init__() self.N = max(a.N, b.N) self.prefix = prefix self.a = Bus(prefix=a.prefix, wires_list=a.bus) self.b = Bus(prefix=b.prefix, wires_list=b.bus) # Bus sign extension in case buses have different lengths self.a.bus_extend(N=self.N, prefix=a.prefix) self.b.bus_extend(N=self.N, prefix=b.prefix) # Output wires for multiplication product self.out = Bus(self.prefix+"_out", self.N*2) # Gradual generation of partial products for b_multiplier_index in range(self.N): for a_multiplicand_index in range(self.N): # AND gates generation for calculation of partial products obj_and = AndGate(self.a.get_wire(a_multiplicand_index), self.b.get_wire(b_multiplier_index), prefix=self.prefix+"_and"+str(a_multiplicand_index)+"_"+str(b_multiplier_index)) self.add_component(obj_and) if b_multiplier_index != 0: previous_product = self.components[a_multiplicand_index + b_multiplier_index].out if b_multiplier_index == 1 else self.get_previous_partial_product(a_index=a_multiplicand_index, b_index=b_multiplier_index) # HA generation for first 1-bit adder in each row starting from the second one if a_multiplicand_index == 0: obj_adder = HalfAdder(self.get_previous_component().out, previous_product, prefix=self.prefix+"_ha"+str(a_multiplicand_index)+"_"+str(b_multiplier_index)) self.add_component(obj_adder) # Product generation self.out.connect(b_multiplier_index, obj_adder.get_sum_wire()) # HA generation, last 1-bit adder in second row elif a_multiplicand_index == self.N-1 and b_multiplier_index == 1: obj_adder = HalfAdder(self.get_previous_component().out, self.get_previous_component(number=2).get_carry_wire(), prefix=self.prefix+"_ha"+str(a_multiplicand_index)+"_"+str(b_multiplier_index)) self.add_component(obj_adder) # FA generation else: obj_adder = FullAdder(self.get_previous_component().out, previous_product, self.get_previous_component(number=2).get_carry_wire(), prefix=self.prefix+"_fa"+str(a_multiplicand_index)+"_"+str(b_multiplier_index)) self.add_component(obj_adder) # PRODUCT GENERATION if a_multiplicand_index == 0 and b_multiplier_index == 0: self.out.connect(a_multiplicand_index, obj_and.out) # 1 bit multiplier case if a_multiplicand_index == self.N-1: self.out.connect(a_multiplicand_index+1, ConstantWireValue0) elif b_multiplier_index == self.N-1: self.out.connect(b_multiplier_index + a_multiplicand_index, obj_adder.get_sum_wire()) if a_multiplicand_index == self.N-1: self.out.connect(self.out.N-1, obj_adder.get_carry_wire())
Ancestors
Inherited members
MultiplierCircuit
:add_column_wire
add_column_wires
add_component
get_blif_code_flat
get_blif_code_hier
get_c_code_flat
get_c_code_hier
get_carry_wire
get_cgp_code_flat
get_cgp_wires
get_circuit_blif
get_circuit_c
get_circuit_gates
get_circuit_v
get_circuit_wire_index
get_column_height
get_column_wire
get_component_types
get_declaration_blif
get_declaration_c_flat
get_declaration_c_hier
get_declaration_v_flat
get_declaration_v_hier
get_declarations_c_hier
get_declarations_v_hier
get_function_blif_flat
get_function_block_blif
get_function_block_c
get_function_block_v
get_function_blocks_blif
get_function_blocks_c
get_function_blocks_v
get_function_out_blif
get_function_out_c_flat
get_function_out_c_hier
get_function_out_v_flat
get_function_out_v_hier
get_includes_c
get_init_c_flat
get_init_c_hier
get_init_v_flat
get_init_v_hier
get_instance_num
get_invocation_blif_hier
get_invocations_blif_hier
get_maximum_height
get_multi_bit_components
get_one_bit_components
get_out_invocation_c
get_out_invocation_v
get_outputs_cgp
get_parameters_cgp
get_previous_component
get_previous_partial_product
get_prototype_blif
get_prototype_c
get_prototype_v
get_sum_wire
get_triplets_cgp
get_unique_types
get_v_code_flat
get_v_code_hier
init_column_heights
save_wire_id
update_column_heights
update_column_wires