#KOMPONENTY PROPOJU #todo ?? class wire(): def __init__(self, value=0): #todo nechat inicializaci? self.value = value self.id=None def add_wire_id(self, wire_id): self.id = wire_id def get_wire_id(self): return self.id class bus(): #inicializace sbernice def __init__(self, N=1): self.bus = [wire() for i in range(N)] self.N = N def get_wire(self, wire_index): return self.bus[wire_index] def add_wire_id(self, wire_id, wire_index=0): self.bus[wire_index].id = wire_id def get_wire_id(self, wire_index): return self.bus[wire_index].id #vraci logickou hodnotu vedenou na drate s prislusnym indexem def get_wire_value(self, wire_index): return self.bus[wire_index].value #pripojeni vstupni, vystupni hodnoty komponenty k sbernici def connect(self, wire_index, component_output_value): self.bus[wire_index].value = component_output_value #KOMPONENTY HRADEL class logic_gate(): def export_to_C(self, filename, main_component=True, file_object=None, wire_id=0, line_var_cnt=0, init_run=True): if main_component == True: with open(filename,'w') as f: f.write('#include \n\n') if self.gate_type == 'not_gate': f.write('uint8_t not_gate(uint8_t a) {\n') f.write(' uint8_t y = 0;\n') f.write(' uint8_t n1 = (a >> 0) & 0x1;\n') f.write(' y |= (~n1 & 0x01) << 0;\n') elif self.gate_type == 'and_gate': f.write('uint8_t and_gate(uint8_t a, uint8_t b) {\n') f.write(' uint8_t y = 0;\n') f.write(' uint8_t n1 = (a >> 0) & 0x1;\n') f.write(' uint8_t n2 = (b >> 0) & 0x1;\n') f.write(' y |= ((n1 & n2) & 0x01) << 0;\n') elif self.gate_type == 'or_gate': f.write('uint8_t or_gate(uint8_t a, uint8_t b) {\n') f.write(' uint8_t y = 0;\n') f.write(' uint8_t n1 = (a >> 0) & 0x1;\n') f.write(' uint8_t n2 = (b >> 0) & 0x1;\n') f.write(' y |= ((n1 | n2) & 0x01) << 0;\n') elif self.gate_type == 'xor_gate': f.write('uint8_t xor_gate(uint8_t a, uint8_t b) {\n') f.write(' uint8_t y = 0;\n') f.write(' uint8_t n1 = (a >> 0) & 0x1;\n') f.write(' uint8_t n2 = (b >> 0) & 0x1;\n') f.write(' y |= ((n1 ^ n2) & 0x01) << 0;\n') f.write(' return y;\n') f.write('}\n') else: if init_run == True: if line_var_cnt == 0: file_object.write(' uint8_t ') else: file_object.write(', ') file_object.write(f'w_{wire_id}=0') self.y.add_wire_id(wire_id) else: if self.gate_type == 'not_gate': file_object.write(f' w_{self.y.get_wire_id()} = ~w_{self.input.get_wire_id(0)};\n') else: file_object.write(f' w_{self.y.get_wire_id()} = w_{self.input.get_wire_id(0)} {self.operator} w_{self.input.get_wire_id(1)};\n') #jednovstupove class not_gate(logic_gate): def __init__(self, input_wire_a): self.gate_type = 'not_gate' self.wires_N = 2 self.input = bus(1) self.input.bus[0] = input_wire_a if input_wire_a.value == 1: self.y = wire(0) else: self.y = wire(1) #dvouvstupove class and_gate(logic_gate): def __init__(self, input_wire_a, input_wire_b): self.gate_type = 'and_gate' self.wires_N = 3 self.operator = '&' self.input = bus(2) self.input.bus[0] = input_wire_a self.input.bus[1] = input_wire_b if input_wire_a.value == 1 and input_wire_b.value == 1: self.y = wire(1) else: self.y = wire(0) class or_gate(logic_gate): def __init__(self, input_wire_a, input_wire_b): self.gate_type = 'or_gate' self.wires_N = 3 self.operator = '|' self.input = bus(2) self.input.bus[0] = input_wire_a self.input.bus[1] = input_wire_b if input_wire_a.value == 1 or input_wire_b.value == 1: self.y = wire(1) else: self.y = wire(0) class xor_gate(logic_gate): def __init__(self, input_wire_a, input_wire_b): self.gate_type = 'xor_gate' self.wires_N = 3 self.operator = '^' self.input = bus(2) self.input.bus[0] = input_wire_a self.input.bus[1] = input_wire_b if (input_wire_a.value == 1 and input_wire_b.value == 0) or (input_wire_a.value == 0 and input_wire_b.value == 1): self.y = wire(1) else: self.y = wire(0) #ARITMETICKE OBVODY class arithmetic_circuit(): def __init__(self): self.component_list = [] self.input_N = 0 self.carry_out_gate = None self.sum_out_gates = [] def add_component(self, component): self.component_list.append(component) def get_component_index(self, component): return self.component_list.index(component) def get_previous_component(self): return self.component_list[-1] #pomocna funkce def wire_index_offset(self, index): return index def get_carry_out_wire(self): return self.carry_out_gate.y #todo jinak zpravidla posledni bit ve vystupnim vektoru bitu def get_carry_out_val(self): return self.carry_out_gate.value #todo def get_sum_out_val(self, index): return self.out.get_value(index) #Export do jinych reprezentaci def export_to_C(self, filename, main_component=True, file_object=None, wire_id=0, line_var_cnt=0, init_run=True): if main_component == True: with open(filename,'w') as f: f.write('#include \n\n') #DEKLARACE FUNKCE PRO DANY TYP OBVODU ## if self.circuit_type == 'ha': f.write('uint8_t ha(uint8_t a, uint8_t b) {\n') f.write(' uint8_t out = 0;\n') elif self.circuit_type == 'fa': f.write('uint8_t fa(uint8_t a, uint8_t b, uint8_t cin) {\n') f.write(' uint8_t out = 0;\n') elif self.circuit_type == 'rca_'+str(int(self.input_N/2)): f.write('uint64_t rca(uint64_t a, uint64_t b) {\n') f.write(' uint64_t out = 0;\n') #DEKLARACE DRATU ## #deklarace vstupu obvodu for in_wire_index in range(self.input_N): if line_var_cnt == 0: f.write(' uint8_t ') else: f.write(', ') f.write(f'w_{in_wire_index}=0') self.inputs.add_wire_id(wire_id, in_wire_index) line_var_cnt += 1 wire_id += 1 #deklarace vstupu a vystupu hradel vnitrni logiky obvodu if self.circuit_type != 'ha' and self.circuit_type != 'fa': for component in self.component_list: if component.circuit_type == 'ha': component.export_to_C(filename, False, file_object=f, wire_id=wire_id, line_var_cnt=line_var_cnt) wire_id += 2 line_var_cnt += 2 elif component.circuit_type == 'fa': component.export_to_C(filename, False, file_object=f, wire_id=wire_id, line_var_cnt=line_var_cnt) wire_id += 5 line_var_cnt += 5 else: for component in self.component_list: #zapis 8 promennych na radek, odradkovani pro prehlednost if line_var_cnt >= 8: f.write(';\n') line_var_cnt = 0 component.export_to_C(filename, False, file_object=f, wire_id=wire_id, line_var_cnt=line_var_cnt) wire_id += 1 line_var_cnt += 1 f.write(';\n') #PRIRAZENI VSTUPNICH HODNOT K DRATUM if self.circuit_type == 'fa': f.write(f' w_{self.inputs.get_wire_id(0)} = (a >> 0) & 0x1;\n') f.write(f' w_{self.inputs.get_wire_id(1)} = (b >> 0) & 0x1;\n') f.write(f' w_{self.inputs.get_wire_id(2)} = (cin >> 0) & 0x1;\n') else: for in_wire_index in range(0, int(self.input_N/2)): f.write(f' w_{self.inputs.get_wire_id(in_wire_index)} = (a >> {in_wire_index}) & 0x1;\n') for in_wire_index in range(0, int(self.input_N/2)): f.write(f' w_{self.inputs.get_wire_id(in_wire_index + int(self.input_N/2))} = (b >> {in_wire_index}) & 0x1;\n') #VYPOCTY VYSTUPNICH HODNOT HRADEL ## for component in self.component_list: component.export_to_C(filename, False, file_object=f, init_run=False) #PRIRAZENI VYSTUPU ## for out_wire_index in range(self.out.N): if self.circuit_type != 'ha' and self.circuit_type != 'fa': if out_wire_index == (self.out.N)-1: out_component_index = self.component_list[out_wire_index-1].get_component_index(self.carry_out_gate) component = self.component_list[out_wire_index-1] else: out_component_index = self.component_list[out_wire_index].get_component_index(self.sum_out_gates[out_wire_index]) component = self.component_list[out_wire_index] if component.circuit_type == 'ha': out_component_index = out_component_index * out_wire_index elif component.circuit_type == 'fa': if out_wire_index == (self.out.N)-1: out_component_index += 5 * (out_wire_index-2) + 2 else: out_component_index += 5 * (out_wire_index-1) + 2 wire_id = self.wire_index_offset(out_component_index+self.input_N) f.write(f' out |= (w_{wire_id} & 0x01) << {out_wire_index};\n') else: #Cout if out_wire_index == (self.out.N)-1: out_component_index = self.get_component_index(self.carry_out_gate) #Sum else: out_component_index = self.get_component_index(self.sum_out_gates[out_wire_index]) wire_id = self.wire_index_offset(out_component_index+self.input_N) f.write(f' out |= (w_{wire_id} & 0x01) << {out_wire_index};\n') f.write(' return out;\n') f.write('}\n') else: if init_run == True: for component in self.component_list: #zapis 8 promennych na radek, odradkovani pro prehlednost if line_var_cnt >= 8: file_object.write(';\n') line_var_cnt = 0 component.export_to_C(filename, False, file_object=file_object, wire_id=wire_id, line_var_cnt=line_var_cnt) wire_id += 1 line_var_cnt += 1 else: for component in self.component_list: component.export_to_C(filename, False, file_object=file_object, init_run=False) class half_adder(arithmetic_circuit): def __init__(self, input_wire_a, input_wire_b): super().__init__() self.input_N = 2 self.circuit_type = 'ha' self.inputs = bus(self.input_N) self.inputs.bus[0] = input_wire_a self.inputs.bus[1] = input_wire_b #2 draty pro vystupy komponenty (sum, cout) self.out = bus(2) #Sum #XOR hradlo pro vypocet jednobitového souctu (sum) obj_xor_gate = xor_gate(input_wire_a, input_wire_b) self.add_component(obj_xor_gate) self.out.connect(0,obj_xor_gate.y) self.sum_out_gates.append(obj_xor_gate) #Cout #AND hradlo pro vypocet jednobitoveho priznaku prenosu do vyssiho radu (cout)jednobitového souctu (sum) obj_and_gate = and_gate(input_wire_a, input_wire_b) self.add_component(obj_and_gate) self.out.connect(1,obj_and_gate.y) self.carry_out_gate = obj_and_gate def get_sum_out_component(self): return self.component_list[0] def get_sum_out_wire(self): return self.out.get_wire(0) class full_adder(arithmetic_circuit): def __init__(self, input_wire_a, input_wire_b, carry_in_wire): super().__init__() self.input_N = 3 self.circuit_type = 'fa' self.inputs = bus(self.input_N) self.inputs.bus[0] = input_wire_a self.inputs.bus[1] = input_wire_b self.inputs.bus[2] = carry_in_wire #2 draty pro vystupy komponenty (sum, cout) self.out = bus(2) #PG logika propagate_xor_gate1 = xor_gate(input_wire_a, input_wire_b) self.add_component(propagate_xor_gate1) generate_and_gate1 = and_gate(input_wire_a, input_wire_b) self.add_component(generate_and_gate1) #Sum #XOR hradlo pro vypocet jednobitového souctu (sum) obj_xor_gate2 = xor_gate(propagate_xor_gate1.y, carry_in_wire) self.add_component(obj_xor_gate2) self.out.connect(0,obj_xor_gate2.y) self.sum_out_gates.append(obj_xor_gate2) #Cout #AND hradlo pro vypocet jednobitoveho priznaku prenosu do vyssiho radu (cout)jednobitového souctu (sum) obj_and_gate2 = and_gate(propagate_xor_gate1.y, carry_in_wire) self.add_component(obj_and_gate2) obj_or_gate = or_gate(generate_and_gate1.y, obj_and_gate2.y) self.add_component(obj_or_gate) self.out.connect(1,obj_or_gate.y) self.carry_out_gate = obj_or_gate #todo nechat? self.propagate = propagate_xor_gate1.y self.generate = generate_and_gate1.y def get_sum_out_component(self): return self.component_list[0] def get_sum_out_wire(self): return self.out.get_wire(0) class ripple_carry_adder(arithmetic_circuit): def __init__(self, input_bus_a, input_bus_b): super().__init__() N = max(input_bus_a.N,input_bus_b.N) self.input_N = N * 2 self.circuit_type = 'rca_'+str(N) self.sum_out_gates= [] self.inputs = bus(self.input_N) for i in range(N): self.inputs.bus[i] = input_bus_a.get_wire(i) for i in range(N): self.inputs.bus[i+N] = input_bus_b.get_wire(i) #vystupni draty pro N souctu a vystupni priznak prenosu do vyssiho radu (cout) self.out = bus(N+1) #postupne pridani jednobitovych scitacek for input_index in range(N): #prvni je polovicni scitacka if input_index == 0: obj_ha = half_adder(input_bus_a.get_wire(input_index), input_bus_b.get_wire(input_index)) self.add_component(obj_ha) self.out.connect(input_index, obj_ha) self.sum_out_gates.append(obj_ha.sum_out_gates[0]) else: obj_fa = full_adder(input_bus_a.get_wire(input_index), input_bus_b.get_wire(input_index), self.get_previous_component().get_carry_out_wire()) self.add_component(obj_fa) self.out.connect(input_index, obj_fa.get_sum_out_wire()) self.sum_out_gates.append(obj_fa.sum_out_gates[0]) if input_index == (N-1): self.out.connect(N, obj_fa.get_carry_out_wire()) self.carry_out_gate = obj_fa.carry_out_gate