from wire_components import wire, bus from logic_gates_generator import and_gate, xor_gate, or_gate import sys # ARITMETICKE OBVODY class arithmetic_circuit(): def __init__(self): self.components = [] self.circuit_wires = [] self.c_data_type = "uint64_t" self.input_N = 0 self.carry_out_gate = None self.sum_out_gates = [] def add_component(self, component): self.components.append(component) def get_previous_component(self): return self.components[-1] def get_sum_wire(self): return self.out.get_wire(0) def get_carry_wire(self): return self.out.get_wire(1) @staticmethod def get_includes_c(): return f"#include \n#include \n\n" def get_prototype_c(self): return f"{self.c_data_type} {self.prefix}({self.c_data_type} {self.a.prefix}, {self.c_data_type} {self.b.prefix})" + "{" + '\n' def get_declaration_c(self): return f"".join([c.get_declaration_c() for c in self.components]) def get_initialization_c(self): return "".join([c.get_initialization_c() for c in self.components]) def get_function_sum_c(self): return "".join([c.get_function_sum_c(self.components.index(c)) for c in self.components]) def get_function_carry_c(self): return f"{self.get_previous_component().get_function_carry_c(offset=self.out.N-1)}" # Generovani aritmetickeho obvodu do jazyka C def get_c_code(self, file_object): file_object.write(self.get_includes_c()) file_object.write(self.get_prototype_c()) file_object.write(self.out.get_declaration_c()) file_object.write(self.get_declaration_c()) file_object.write(self.get_initialization_c()) file_object.write(self.get_function_sum_c()) file_object.write(self.get_function_carry_c()) file_object.write(f" return {self.out.prefix}"+";\n}") file_object.close() class half_adder(arithmetic_circuit): def __init__(self, a: wire, b: wire, prefix: str = "ha"): super().__init__() self.c_data_type = "uint8_t" self.prefix = prefix self.a = a self.b = b # 2 draty pro vystupy komponenty (sum, cout) self.out = bus("out", 2) # Sum # XOR hradlo pro vypocet jednobitového souctu (sum) obj_xor_gate = xor_gate(a, b, prefix, outid=0) self.add_component(obj_xor_gate) self.out.connect(0, obj_xor_gate.output) # Cout # AND hradlo pro vypocet jednobitoveho priznaku prenosu do vyssiho radu (cout)jednobitového souctu (sum) obj_and_gate = and_gate(a, b, prefix, outid=1) self.add_component(obj_and_gate) self.out.connect(1, obj_and_gate.output) def get_prototype_c(self): return f"{self.c_data_type} {self.prefix}({self.c_data_type} {self.a.name}, {self.c_data_type} {self.b.name})" + "{" + '\n' # Ziskani vsech unikatnich vodicu obvodu ze vsech hradel k zajisteni neopakujicich se deklaraci stejnych vodicu def get_declaration_c(self): for component in self.components: if not [item for item in self.circuit_wires if item[1] == component.a.name]: self.circuit_wires.append((component.a, component.a.name)) if not [item for item in self.circuit_wires if item[1] == component.b.name]: self.circuit_wires.append((component.b, component.b.name)) if not [item for item in self.circuit_wires if item[1] == component.output.name]: self.circuit_wires.append((component.output, component.output.name)) # Unikatni deklarace vsech propoju obvodu return "".join([c[0].get_declaration_c() for c in self.circuit_wires]) # Inicializace hodnot vodicu polovicni scitacky def get_initialization_c(self): return f" {self.components[0].a.name} = {self.a.get_wire_value_c(offset=self.a.index)};\n" + \ f" {self.components[0].b.name} = {self.b.get_wire_value_c(offset=self.b.index)};\n" + \ f" {self.components[0].output.name} = {self.components[0].get_initialization_c()};\n" + \ f" {self.components[1].output.name} = {self.components[1].get_initialization_c()};\n" def get_function_sum_c(self, offset: int = 0): return f" {self.out.prefix} |= {self.components[0].output.return_wire_value_c(offset = offset)};\n" def get_function_carry_c(self, offset: int = 1): return f" {self.out.prefix} |= {self.components[1].output.return_wire_value_c(offset = offset)};\n" class full_adder(arithmetic_circuit): def __init__(self, a: wire, b: wire, c: wire, prefix: str = "fa"): super().__init__() self.c_data_type = "uint8_t" self.prefix = prefix self.a = a self.b = b self.c = c # 2 draty pro vystupy komponenty (sum, cout) self.out = bus("out", 2) # PG logika propagate_xor_gate1 = xor_gate(a, b, prefix, outid=0) self.add_component(propagate_xor_gate1) generate_and_gate1 = and_gate(a, b, prefix, outid=1) self.add_component(generate_and_gate1) # Sum # XOR hradlo pro vypocet jednobitového souctu (sum) obj_xor_gate2 = xor_gate(propagate_xor_gate1.output, c, prefix, outid=2) self.add_component(obj_xor_gate2) self.out.connect(0, obj_xor_gate2.output) # Cout # AND hradlo pro vypocet jednobitoveho priznaku prenosu do vyssiho radu (cout)jednobitového souctu (sum) obj_and_gate2 = and_gate(propagate_xor_gate1.output, c, prefix, outid=3) self.add_component(obj_and_gate2) obj_or_gate = or_gate(generate_and_gate1.output, obj_and_gate2.output, prefix, outid=4) self.add_component(obj_or_gate) self.out.connect(1, obj_or_gate.output) # TODO nechat do budoucna? self.propagate = propagate_xor_gate1.output self.generate = generate_and_gate1.output # 3 vstupy spolu s carry in def get_prototype_c(self): return f"{self.c_data_type} {self.prefix}({self.c_data_type} {self.a.name}, {self.c_data_type} {self.b.name}, {self.c_data_type} {self.c.name})" + "{" + '\n' def get_declaration_c(self): for component in self.components: if not [item for item in self.circuit_wires if item[1] == component.a.name]: self.circuit_wires.append((component.a, component.a.name)) if not [item for item in self.circuit_wires if item[1] == component.b.name]: self.circuit_wires.append((component.b, component.b.name)) if not [item for item in self.circuit_wires if item[1] == component.output.name]: self.circuit_wires.append((component.output, component.output.name)) # Unikatni deklarace vsech propoju obvodu return "".join([c[0].get_declaration_c() for c in self.circuit_wires]) # Inicializace hodnot vodicu uplne scitacky def get_initialization_c(self): return f" {self.components[0].a.name} = {self.a.get_wire_value_c(offset=self.a.index)};\n" + \ f" {self.components[0].b.name} = {self.b.get_wire_value_c(offset=self.b.index)};\n" + \ f" {self.components[2].b.name} = {self.c.get_wire_value_c()};\n" + \ f" {self.components[0].output.name} = {self.components[0].get_initialization_c()};\n" + \ f" {self.components[1].output.name} = {self.components[1].get_initialization_c()};\n" + \ f" {self.components[2].output.name} = {self.components[2].get_initialization_c()};\n" + \ f" {self.components[3].output.name} = {self.components[3].get_initialization_c()};\n" + \ f" {self.components[4].output.name} = {self.components[4].get_initialization_c()};\n" def get_function_sum_c(self, offset: int = 0): return f" {self.out.prefix} |= {self.components[2].output.return_wire_value_c(offset = offset)};\n" def get_function_carry_c(self, offset: int = 1): return f" {self.out.prefix} |= {self.components[4].output.return_wire_value_c(offset = offset)};\n" class ripple_carry_adder(arithmetic_circuit): def __init__(self, a: bus, b: bus, prefix: str = "rca"): super().__init__() N = max(a.N, b.N) self.prefix = prefix+str(N) self.a = a self.b = b # Vystupni draty pro N souctu a vystupni priznak prenosu do vyssiho radu (cout) self.out = bus("out", N+1) # Postupne pridani jednobitovych scitacek for input_index in range(N): # Prvni je polovicni scitacka if input_index == 0: obj_ha = half_adder(a.get_wire(input_index), b.get_wire(input_index), prefix=self.prefix+"_ha") self.add_component(obj_ha) self.out.connect(input_index, obj_ha) else: obj_fa = full_adder(a.get_wire(input_index), b.get_wire(input_index), self.get_previous_component().get_carry_wire(), prefix=self.prefix+"_fa"+str(input_index)) self.add_component(obj_fa) self.out.connect(input_index, obj_fa.get_sum_wire()) if input_index == (N-1): self.out.connect(N, obj_fa.get_carry_wire()) if __name__ == "__main__": # Vytvoreni obvodu 8 bitove postupne scitacky a = bus(N=8, prefix="a") b = bus(N=8, prefix="b") rca = ripple_carry_adder(a, b) # Export do jazyka C (flat) rca.get_c_code(open("rca_8.c", "w")) # Vytvoreni logickeho hradla OR a1 = wire("a", 1) b1 = wire("b", 0) xor_gate = xor_gate(a1, b1) # Export do jazyka C (flat) xor_gate.get_c_code(sys.stdout)